【題目】在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結(jié)DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點M與點C重合,求證:DF=MN;
(2)如圖2,假設(shè)點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,點E同時從點A出發(fā),以 cm/s速度沿AC向點C運動,運動時間為t(t>0);
①判斷命題“當(dāng)點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.
【答案】
(1)
證明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,
∴∠ADF=∠DCN.
在△ADF與△DNC中,
,
∴△ADF≌△DNC(ASA),
∴DF=MN
(2)
解:①該命題是真命題.
理由如下:當(dāng)點F是邊AB中點時,則AF= AB= CD.
∵AB∥CD,∴△AFE∽△CDE,
∴ ,
∴AE= EC,則AE= AC= a,
∴t= = a.
則CM=1t= a= CD,
∴點M為邊CD的三等分點.
②能.理由如下:
易證△AFE∽△CDE,∴ ,即 ,得AF= .
易證△MND∽△DFA,∴ ,即 ,得ND=t.
∴ND=CM=t,AN=DM=a﹣t.
若△MNF為等腰三角形,則可能有三種情形:
(Ⅰ)若FN=MN,則由AN=DM知△FAN≌△NDM,
∴AF=ND,即 =t,得t=0,不合題意.
∴此種情形不存在;
(Ⅱ)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,
∴t= a,此時點F與點B重合;
(Ⅲ)若FM=MN,顯然此時點F在BC邊上,如下圖所示:
由△CEF∽△AED,得 ,
∴ = ,
∴CF= ,
由△DNM∽△CDF,得 = ,
∴ = ,
∴DN=t=CM,
在Rt△MFC和△NMD中,
∵ ,
∴△MFC≌△NMD,∴FC=DM=a﹣t;
又由△NDM∽△DCF,∴ ,即 ,∴FC= .
∴ =a﹣t,
∴t=a,此時點F與點C重合.
綜上所述,當(dāng)t=a或t= a時,△MNF能夠成為等腰三角形
【解析】(1)證明△ADF≌△DNC,即可得到DF=MN;(2)①首先證明△AFE∽△CDE,利用比例式求出時間t= a,進而得到CM= a= CD,所以該命題為真命題;②若△MNF為等腰三角形,則可能有三種情形,需要分類討論.
【考點精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點A,AB=8,AC=4,射線BM⊥AB,垂足為點B,一動點E從A點出發(fā)以2厘米/秒的速度沿射線AN運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當(dāng)點E離開點A后,運動______ 秒時,△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC+∠ECB=180°,∠P=∠Q,
(1)AB與ED平行嗎?為什么?
(2)PB與CD平行嗎?為什么?
(3)∠1與∠2是否相等?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線上有n(n≥2的正整數(shù))個點,每相鄰兩點間距離為1,從左邊第1個點起跳,且同時滿足以下三個條件:
①每次跳躍均盡可能最大;
②跳n次后必須回到第1個點;
③這n次跳躍將每個點全部到達(dá),
設(shè)跳過的所有路程之和為Sn , 則S25= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關(guān)于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)將△ABD平移,使D沿BD延長線移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC.
(1)猜想∠B′EC與∠A′之間的關(guān)系,并寫出理由.
(2)如圖將△ABD平移至如圖(2)所示,得到△A′B′D′,請問:A′D平分∠B′A′C嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com