【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(1,2)和B(﹣2,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出y1≥y2時(shí)x的取值范圍;
(3)過(guò)點(diǎn)B作BE∥x軸,AD⊥BE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若∠DAC=30°,求點(diǎn)C的坐標(biāo).
【答案】(1)反比例函數(shù)的解析式為y2=;一次函數(shù)解析式為y1=x+1.(2)當(dāng)﹣2≤x<0或x≥1時(shí),y1≥y2.(3)點(diǎn)C的坐標(biāo)為(1﹣,﹣1)或(1+,﹣1).
【解析】
(1)由點(diǎn)A的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出k值,由點(diǎn)B的橫坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出m值,進(jìn)而可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出一次函數(shù)解析式;
(2)觀察函數(shù)圖象,由兩函數(shù)圖象的上下位置關(guān)系結(jié)合兩交點(diǎn)的坐標(biāo),即可找出y1≥y2時(shí)x的取值范圍;
(3)由點(diǎn)A,B的縱坐標(biāo)可得出AD的長(zhǎng)度及點(diǎn)D的坐標(biāo),在Rt△ADC中,由∠DAC=30°可得出CD的長(zhǎng)度,再結(jié)合點(diǎn)D的坐標(biāo)即可求出點(diǎn)C的坐標(biāo).
(1)∵點(diǎn)A(1,2)在反比例函數(shù)y2=的圖象上,
∴2=,
∴k=1×2=2,
∴反比例函數(shù)的解析式為y2=.
∵點(diǎn)B(﹣2,m)在反比例函數(shù)y2=的圖象上,
∴m==﹣1,
∴點(diǎn)B的坐標(biāo)為(﹣2,﹣1).
把A(1,2),B(﹣2,﹣1)代入y1=ax+b得:
解得:
∴一次函數(shù)解析式為y1=x+1.
(2)由函數(shù)圖象可知:當(dāng)﹣2≤x<0或x≥1時(shí),y1≥y2.
(3)由題意得:AD=2﹣(﹣1)=3,點(diǎn)D的坐標(biāo)為(1,﹣1).
在Rt△ADC中,tan∠DAC=,即,
解得:CD=.
當(dāng)點(diǎn)C在點(diǎn)D的左側(cè)時(shí),點(diǎn)C的坐標(biāo)為(1﹣,﹣1);
當(dāng)點(diǎn)C在點(diǎn)D的右側(cè)時(shí),點(diǎn)C的坐標(biāo)為(1+,﹣1).
∴點(diǎn)C的坐標(biāo)為(1﹣,﹣1)或(1+,﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小美周末來(lái)到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A、B、C、D、E五個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.規(guī)定:
①玩家只能將小兔從A、B兩個(gè)出入口放入;
②如果小兔進(jìn)入籠子后選擇從開(kāi)始進(jìn)入的出入口離開(kāi),則可獲得一只價(jià)值5元小兔玩具,否則應(yīng)付費(fèi)3元.
(1)問(wèn)小美得到小兔玩具的機(jī)會(huì)有多大?
(2)假設(shè)有100人次玩此游戲,估計(jì)游戲設(shè)計(jì)者可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)(1,0),且與y軸交于點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo) ;
(2)求a,b的數(shù)量關(guān)系;
(3)點(diǎn)D(t,3)是拋物線y=ax2+bx+3上一點(diǎn)(點(diǎn)D不與點(diǎn)C重合).
①當(dāng)t=3時(shí),求拋物線的表達(dá)式;
②當(dāng)3<CD<4時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當(dāng)自變量x的值滿足﹣3≤x≤﹣1時(shí),與其對(duì)應(yīng)的函數(shù)值y的最小值為5,則m的值為( 。
A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求該二次函數(shù)與x軸的交點(diǎn)坐標(biāo)和頂點(diǎn);
(2)在所給坐標(biāo)系中畫(huà)出該二次函數(shù)的大致圖象,并寫(xiě)出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小松設(shè)計(jì)的“做圓的內(nèi)接等腰直角三角形”的尺規(guī)作圖過(guò)程.
已知:⊙O.
求作:⊙O的內(nèi)接等腰直角三角形.
作法:如圖,
①作直徑AB;
②分別以點(diǎn)A,B為圓心,以大于的同樣長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);
③作直線MN交⊙O于點(diǎn)C,D;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小松設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB是直徑, C是⊙O上一點(diǎn)
∴ ∠ACB= ( ) (填寫(xiě)推理依據(jù))
∵AC=BC( )(填寫(xiě)推理依據(jù))
∴△ABC是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表給出了以下結(jié)論:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
①二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;②當(dāng)﹣<x<2時(shí),y<0;③二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸的兩側(cè);④當(dāng)x<1時(shí),y隨x的增大而減。畡t其中正確結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O上依次有A、B、C三點(diǎn),BO的延長(zhǎng)線交⊙O于E,,過(guò)點(diǎn)C作CD∥AB交BE的延長(zhǎng)線于D,AD交⊙O于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;
(2)連接OA、OF,若∠AOF=3∠FOE且AF=3,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com