【題目】用兩個(gè)全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊合,使三角尺的60°角的頂點(diǎn)與點(diǎn)A重合,兩邊分別與AB,AC重合.將三角尺繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).

1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD相交于點(diǎn)E,F時(shí),(如圖1),通過(guò)觀(guān)察或測(cè)量BE,CF的長(zhǎng)度,你能得出什么結(jié)論并證明你的結(jié)論;

2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長(zhǎng)線(xiàn)相交于點(diǎn)EF時(shí)(如圖2),你在(1)中得到的結(jié)論還成立嗎?簡(jiǎn)要說(shuō)明理由.

【答案】1BECF.見(jiàn)解析;(2BECF仍然成立.理由見(jiàn)解析.

【解析】

1)根據(jù)圖形中BE、CF的長(zhǎng)度可以直接得出BECF的結(jié)論,當(dāng)然也可以通過(guò)證明ABE≌△ACF得出結(jié)論.

2)可以通過(guò)證明△ADF≌△ACE,得出CEDF,進(jìn)而得出BECF

1BECF

證明:在△ABE和△ACF中,

∵∠BAE+EAC=∠CAF+EAC60°,

∴∠BAE=∠CAF

ABAC,∠B=∠ACF60°,∴△ABE≌△ACFASA).

BECF;

2BECF仍然成立.

證明:在△ACE和△ADF中,

∵∠CAE+EAD=∠FAD+DAE60°,

∴∠CAE=∠DAF

∵∠BCA=∠ACD60°,

∴∠FCE60°

∴∠ACE120°,

∵∠ADC60°

∴∠ADF120°,

在△ACE和△ADF中,

∴△ADF≌△ACE,

CEDF

BECF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)共500名學(xué)生參加法律知識(shí)測(cè)試,從中隨機(jī)抽取一部分試卷成績(jī)(得分取整數(shù))為樣本作統(tǒng)計(jì)分析,進(jìn)行整理后分成五組,并繪制成頻數(shù)分布直方圖(見(jiàn)圖)請(qǐng)結(jié)合直方圖提供的信息,解答以下問(wèn)題:

1)隨機(jī)抽取了多少名學(xué)生的測(cè)試成績(jī)?

270.580.5這一分?jǐn)?shù)段的頻率是多少?

3)若90分以上(不含90分)定為優(yōu)秀,樣本中的優(yōu)秀率是多少?

4)請(qǐng)估計(jì)出該校九年級(jí)這次法律知識(shí)測(cè)試獲得優(yōu)秀的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.

(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種工具,每天所得的銷(xiāo)售利潤(rùn)w()與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式;

(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;

(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案:

方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;

方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元.

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1+2=180°,∠3=B.

(1)DEBC平行嗎?為什么?

(2)ED平分∠AEF,∠C=45°,試判定EFAC有怎樣的位置關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專(zhuān)家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長(zhǎng);

(2)求完成這項(xiàng)工程需要土石多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=10cmBDAC于點(diǎn)D,且BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),速度為2cm/秒;同時(shí)直線(xiàn)PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),速度為1cm/秒,運(yùn)動(dòng)過(guò)程中始終保持PQAC,直線(xiàn)PQAB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t5).

1)當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?

2)設(shè)四邊形PQCM的面積為ycm2),求yt之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn)(右),與軸交于點(diǎn)

)求的值.

)若為二次函數(shù)圖象的頂點(diǎn),求證:

)若為二次函數(shù)圖象上一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四名同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選兩位同學(xué)打第一場(chǎng)比賽.

(1)請(qǐng)用樹(shù)狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率;

(2)請(qǐng)利用若干個(gè)除顏色外其余都相同的乒乓球,設(shè)計(jì)一個(gè)摸球的實(shí)驗(yàn)(至少摸兩次),

并根據(jù)該實(shí)驗(yàn)寫(xiě)出一個(gè)發(fā)生概率與(1)所求概率相同的事件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(﹣10)、B30)、C32

1)求證:BCx軸;

2)求△ABC的面積;

3)若在y軸上有一點(diǎn)P,使SABP2SABC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案