【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+|b+3|=0,S△ABC=14。
(1)求C點的坐標(biāo)
(2)作DE⊥DC交y軸于E點,EF為∠AED的平分線,且∠DFE=90o。求證:FD平分∠ADO.
【答案】(1)(4,-3);(2)見解析;
【解析】
(1)根據(jù)平方根的性質(zhì)和絕對值的非負(fù)性,求出a,b的值,再根據(jù)三角形面積公式即可解答.
(2)根據(jù)角平分線的性質(zhì),三角形的內(nèi)角和定理,分別求出∠OEG=∠FDG和∠ADF=∠AEF即可求證.
(1)∵(a-4)2+|b+3|=0,
∴a=4,b=-3.
又∵S△ABC =14,
∴× AB×BO=14,
∵AB=7
∴BC=4,C點的坐標(biāo)為(4,-3);
(2)設(shè)OD與EF相交于點G,
∵∠F=90°,∠EOG=90°,
∴∠EGO=∠FGD,
∴∠OEG=∠FDG①,
∵∠ADE=90°,
∴∠ADF+∠FDE=90°,在△EFD中,∠FDE+∠FED=90°,
∴∠ADF=∠FED,
又∵EF平分∠AED,
∴∠AEF=∠FED,∴∠ADF=∠AEF②,
由①②得∠FDG=∠ADF,
∴FD平分∠ADO.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣3)﹣(﹣2)+(﹣4);
(2)﹣10+14+16﹣8;
(3)(-4)×(-5)-90÷(-15);
(4)﹣23÷×(﹣)2;
(5)(+﹣)×(﹣36);
(6)﹣14﹣×[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位…,依此規(guī)律跳動下去,點P第2019次跳動至點P2019的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請從以下兩個小題中任選一題作答,若多選,則按第一題計分.
(A)兒童節(jié)期間,文具商店搞促銷活動,同時購買一個書包和一個文具盒可以打8折優(yōu)惠,能比標(biāo)價省13.2元,已知書包標(biāo)價比文具盒標(biāo)價的3倍少6元.那么設(shè)一個文具盒標(biāo)價為x元,依據(jù)題意列方程得________.
(B)用科學(xué)記算器計算: ________(計算結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組的同學(xué)進(jìn)行社會實踐活動時,想利用所學(xué)的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為,然后沿方向前行m到達(dá)點處,在處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.(結(jié)果精確到m,參考數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)在數(shù)軸上表示下列各數(shù):0,–2.5,,–2,+5,.
(2)將上列各數(shù)用“<”連接起來:___________ _____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備用9萬元購進(jìn)50臺電視機(jī),為了節(jié)省費用,學(xué)校打算以出廠價從廠家直接采購,已知廠家生產(chǎn)三種不同型號的電視機(jī),出廠價分別為:甲種每臺1500元,乙種每臺2100元,丙種每臺2500元.
(1)若學(xué)校同時購進(jìn)其中兩種不同型號電視機(jī)共50臺,用去9萬元,請研究一下學(xué)校的采購方案;
(2)若學(xué)校去商場購買,在出廠價相同的情況下,商場銷售一臺甲種電視機(jī)獲利150元,銷售一臺乙種電視機(jī)獲利200元,銷售一臺丙種電視機(jī)獲利250元,在(1)的條件下,學(xué)校選擇哪種方案省下的錢最多?
(3)若學(xué)校準(zhǔn)備用9萬元同時購進(jìn)三種不同的電視機(jī)50臺,請你設(shè)計進(jìn)貨方案(直接寫出方案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com