【題目】在平面內(nèi),正方形ABCD與正方形CEFH如圖放置,連接DE,BH,兩線交于M,求證:
(1)BH=DE;
(2)BH⊥DE.
【答案】(1)證明見解析(2)證明見解析
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“邊角邊”證明△BCH和△DCE全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;
(2)根據(jù)全等三角形對應(yīng)角相等可得∠CBH=∠CDE,然后根據(jù)三角形的內(nèi)角和定理求出∠DMB=∠BCD=90°,再根據(jù)垂直的定義證明即可.
試題解析:(1)在正方形ABCD與正方形CEFH中,
BC=CD,CE=CH,∠BCD=∠ECH=90°,
∴∠BCD+∠DCH=∠ECH+∠DCH,
即∠BCH=∠DCE,
在△BCH和△DCE中,
,
∴△BCH≌△DCE(SAS),
∴BH=DE;
(2)由(1)知 △BCH≌△DCE
∴∠CBH=∠EDC
設(shè)BH,CD交于點(diǎn)N,
則∠BNC=∠ DNH
∴∠CBH+∠BNC=∠EDC+∠DNH=90°
∴∠DMN=180°-90°=90°
∴BH⊥DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有足夠多的長方形和正方形卡片,如圖.
(1)如圖,如果選取1號(hào)、2號(hào)、3號(hào)卡片分別為1張、2張、3張,可拼成一個(gè)長方形(不重疊無縫隙).請畫出這個(gè)長方形的草圖,并運(yùn)用拼圖前后面積之間的關(guān)系說明這個(gè)長方形的代數(shù)意義.
這個(gè)長方形的代數(shù)意義是______________;
(2)小明想用類似方法解釋多項(xiàng)式乘法.
那么需用2號(hào)卡片_________張,3號(hào)卡片_____________張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AO、BO、CO、DO分別是四邊形ABCD的四個(gè)內(nèi)角的平分線。
(1)判斷∠AOB與∠COD有怎樣的數(shù)量關(guān)系,為什么?
(2)若∠AOD=∠BOC,AB、CD有怎樣的位置關(guān)系,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線BE、CF相交于點(diǎn)P.
(1)若∠ABC=70°,∠ACB=50°,則∠BPC= °;
(2)求證:∠BPC=180°﹣(∠ABC+∠ACB);
(3)若∠A=α,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
【感受聯(lián)系】在初二的數(shù)學(xué)學(xué)習(xí)中,我們感受過等腰三角形與直角三角形的密切聯(lián)系.等腰三角形作底邊上的高線可轉(zhuǎn)化為直角三角形,直角三角形沿直角邊翻折可得到等腰三角形等等.
【探究發(fā)現(xiàn)】某同學(xué)運(yùn)用這一聯(lián)系,發(fā)現(xiàn)了“30°角所對的直角邊等于斜邊的一半”.并給出了如下的部分探究過程,請你補(bǔ)充完整證明過程
已知:如圖,在△中, °,°.
求證: .
證明:
【靈活運(yùn)用】該同學(xué)家有一張折疊方桌如圖①所示,方桌的主視圖如圖②.經(jīng)測得, ,將桌子放平,兩條桌腿叉開的角度.
求:桌面與地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接河北省中小學(xué)生健康體質(zhì)測試,某學(xué)校開展“健康校園,陽光跳繩”活動(dòng),為此學(xué)校準(zhǔn)備購置A,B,C三種跳繩.已知某廠家的跳繩的規(guī)格與價(jià)格如下表:
,A繩子,B繩子,C繩子長度(米),8,6,4單價(jià)(元/條),12,8,6
(1)已知購買A,B兩種繩子共20條花了180元,問A,B兩種繩子各購買了多少條?
(2)若該廠家有一根長200米的繩子,現(xiàn)將其裁成A,C兩種繩子銷售總價(jià)為240元,則剩余的繩子長度最多可加工幾條B種繩子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列方程的特征及其解的特點(diǎn).
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問題:
(1)請你寫出一個(gè)符合上述特征的方程為____________,其解為x1=-4,x2=-5;
(2)根據(jù)這類方程特征,寫出第n個(gè)方程為________________,其解為x1=-n,x2=-n-1;
(3)請利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請計(jì)算甲六次測試成績的方差;
(3)若乙六次測試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD為臺(tái)球桌面,AD=260cm,AB=130cm,球目前在E點(diǎn)位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點(diǎn)F將球打過去,經(jīng)過反彈后,球剛好彈到D點(diǎn)位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com