下列二次函數(shù)中,頂點坐標(biāo)是(2,-3)的函數(shù)解析式為(   )
A.y=(x-2)2+3 B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-3
C

試題分析:二次函數(shù)的一般形式,其頂點式,頂點坐標(biāo)(-h,k),本題中頂點坐標(biāo)為(2,-3)的函數(shù)解析式是y=(x-2)2-3
點評:本題考查二次函數(shù)的頂點坐標(biāo),考生解本題的關(guān)鍵是能通過二次函數(shù)的頂點式寫出其頂點坐標(biāo)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1 cm的速度勻速運動.設(shè)運動時間為t秒.

(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個定值,如果是,請求出這個定值;如果不是,請說明理由;
(3)當(dāng)△OPQ∽△ABP時,拋物線y=x2+bx+c經(jīng)過B、P兩點,求拋物線的解析式;
(4)在(3)的條件下,過線段BP上一動點M作軸的平行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.

(1)求該拋物線的函數(shù)解析式;
(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意實數(shù)m、n,定義m﹡n=m-3n,則函數(shù),當(dāng)0<x<3時,y的范圍為(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=(2x-1)+2的頂點的坐標(biāo)是(  )
A.(1,2)B.(1,-2)C.(,2)D.(-,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.
(1)寫出銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,商場銷售該品牌童裝獲得的利潤為4000元?
(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,則商場銷售該品牌童裝獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若把函數(shù)y=x的圖象用Exx)記,函數(shù)y=2x+1的圖象用Ex,2x+1)記,……則Ex)圖象上的最低點是__    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)與x軸交點是,則的值是(   )
A.2012B.2011C.2014D.2013

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+x+
(1)該拋物線的對稱軸是________,頂點坐標(biāo)________;
(2)不列表在右上圖的直角坐標(biāo)系內(nèi)描點畫出該拋物線的圖象,并且觀察拋物線寫出y <0時,x的取值范圍;

(3)請問(2)中的拋物線經(jīng)過怎樣平移就可以得到y(tǒng)=ax2的圖象?
(4)若該拋物線上兩點A(x1,y1)、B(x2,y2)的橫坐標(biāo)滿足x1>x2>1,試比y1與y2的大小

查看答案和解析>>

同步練習(xí)冊答案