【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點(diǎn),B是頂點(diǎn)),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點(diǎn)C開始不斷重復(fù)圖形W形成一組“波浪線”.若點(diǎn),在該“波浪線”上,則m的值為________,n的最大值為________.
【答案】1 5
【解析】
由二次函數(shù)解析式可得點(diǎn)A坐標(biāo),由圖象可知A、C之間的距離為5,即可判斷點(diǎn)P與點(diǎn)A的縱坐標(biāo)相同,由反比例函數(shù)圖象可知在每個(gè)區(qū)間y隨x的增大而減小,可得該“波浪線”上y的最大值為二次函數(shù)的最大值,把二次函數(shù)解析式配方成頂點(diǎn)式,可得函數(shù)最大值,即可得n的最大值.
∵拋物線解析式為,
∴x=0時(shí),y=1,
∴點(diǎn)A坐標(biāo)為(0,1)
由圖象可知A、C之間的距離為5,
∴2020÷5=404,
∴點(diǎn)P與點(diǎn)A的縱坐標(biāo)相同,
∴m=1,
由反比例函數(shù)圖象可知,在每個(gè)區(qū)間y隨x的增大而減小,
∴該“波浪線”上y的最大值為二次函數(shù)的最大值,
∵=-4(x-1)2+5,
∴該二次函數(shù)的最大值為5,
∴n的最大值為5.
故答案為:1,5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn),,且、滿足,的邊與軸交于點(diǎn),且為中點(diǎn),雙曲線經(jīng)過、兩點(diǎn).
(1)求的值;
(2)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)、的坐標(biāo);
(3)以線段為對(duì)角線作正方形(如圖,點(diǎn)是邊上一動(dòng)點(diǎn),是的中點(diǎn),,交于,當(dāng)在上運(yùn)動(dòng)時(shí),的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>
(1)求從中任意抽取1個(gè)球恰好是紅球的概率;
(2)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙,你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,除直角外的5個(gè)元素中,已知2個(gè)元素(其中至少有1個(gè)是邊),就可以求出其余的3個(gè)未知元素.對(duì)于任意三角形,我們需要知道幾個(gè)元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察圖①~圖④,根據(jù)圖中三角形的已知元素,可以求出其余未知元素的序號(hào)是____.
(2)如圖⑤,在中,已知,,,能否求出BC的長(zhǎng)度?如果能,請(qǐng)求出BC的長(zhǎng)度;如果不能,請(qǐng)說明理由.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,D是邊BC上一點(diǎn),以點(diǎn)A為圓心,AD長(zhǎng)為半徑作弧,如果與邊BC有交點(diǎn)E(不與點(diǎn)D重合),那么稱為的A-外截弧.例如,圖中是的一條A-外截弧.在平面直角坐標(biāo)系xOy中,已知存在A-外截弧,其中點(diǎn)A的坐標(biāo)為,點(diǎn)B與坐標(biāo)原點(diǎn)O重合.
(1)在點(diǎn),,,中,滿足條件的點(diǎn)C是_______.
(2)若點(diǎn)C在直線上.
①求點(diǎn)C的縱坐標(biāo)的取值范圍.
②直接寫出的A-外截弧所在圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點(diǎn),直線與y軸交于點(diǎn)B,與圖象G交于點(diǎn)C.
(1)求m的值.
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象G在點(diǎn)A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過點(diǎn)時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù).
②若區(qū)域W內(nèi)的整點(diǎn)不少于4個(gè),結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,、分別是、的中點(diǎn),連接、、、,且.
(1)求證:;
(2)若,求的長(zhǎng);
(3)在(2)的條件下,求出的外接圓圓心與的外接圓圓心之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過點(diǎn)A作∠EAF=60°,分別交DC,BC的延長(zhǎng)線于點(diǎn)E,F,連接EF.
(1)如圖1,當(dāng)CE=CF時(shí),判斷△AEF的形狀,并說明理由;
(2)若△AEF是直角三角形,求CE,CF的長(zhǎng)度;
(3)當(dāng)CE,CF的長(zhǎng)度發(fā)生變化時(shí),△CEF的面積是否會(huì)發(fā)生變化,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com