【題目】如圖,在ABCD中,E、F分別為邊AD、BC的中點,對角線AC分別交BE,DF于點G、H.求證:AG=CH.

【答案】證明見解析

【解析】

試題分析:根據(jù)平行四邊形的性質(zhì)得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,證出四邊形BFDE是平行四邊形,得出BE∥DF,證出∠AEG=∠CFH,由ASA證明△AEG≌△CFH,得出對應邊相等即可.

試題解析:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分別為AD、BC邊的中點,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四邊形BFDE是平行四邊形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∵∠EAG=FCH,AE=CF,AEG=CFH,∴△AEG≌△CFH(ASA),∴AG=CH.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應值如表:

x

﹣1

0

1

2

3

4

y

10

5

2

1

2

5

若A(m,y1),B(m+6,y2)兩點都在該函數(shù)的圖象上,當m=時,y1=y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設點(﹣1y1),(2y2),(3,y3)是拋物線y=﹣x2+a上的三點,則y1y2y3的大小關系為(  )

A.y3y2y1B.y1y3y2C.y3y1y2D.y1y2y3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(m﹣1)x2+5x+m2﹣5m+4=0有一個根為0,則m的值等于(  )

A. 1 B. 14 C. 4 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算b2b3正確的結果是(  )
A.2b6
B.2b5
C.b6
D.b5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】哈市某花卉種植基地欲購進甲、乙兩種君子蘭進行培育,若購進甲種2株,乙種3株,則共需要成本1700元;若購進甲種3株,乙種1株,則共需要成本1500元.
(1)求甲乙兩種君子蘭每株成本分別為多少元?
(2)該種植基地決定在成本不超過30000元的前提下購進甲、乙兩種君子蘭,若購進乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進甲種君子蘭多少株?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD及等邊ABE,已知:BAC=30°,EFAB,垂足為F,連接DF.

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將方程x2﹣6x﹣5=0化為(x+m)2=n的形式,則m,n的值分別是( )
A.3和5
B.﹣3和5
C.﹣3和14
D.3和14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

同步練習冊答案