【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經調查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

【答案】(1); .(2)每件商品降價20元時,商場日盈利可達到2100元.

【解析】試題分析:(1)由題意可知,降價1元,可多售出2件,降價x元,可多售出2x件,每件商品盈利的錢數(shù)=原來的盈利-降低的錢數(shù)即可得每件商品盈利的錢數(shù);(2)根據(jù)等量關系每件商品的盈利×可賣出商品的件數(shù)=2100”,把相關數(shù)值代入計算得到合適的解即可.

試題解析:(1)降價1元,可多售出2件,降價x元,可多售出2x件,盈利的錢數(shù)=50x,故答案為2x;(50x);

由題意得:(50x)(302x)=2100,

化簡得:x235x3000

解得:x115,x220

該商場為了盡快減少庫存,則x15不合題意,舍去.

∴x20

答:每件商品降價20元,商場日盈利可達2100元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是∠MONOM上一點,AEON

1)在圖中作∠MON的角平分線OB(要求用尺規(guī)),交AE于點B;過點AOB的垂線,垂足為點D,交ON于點C,連接CB,將圖形補充完整.

2)判斷四邊形OABC的形狀,并證明你的結論.

解:四邊形OABC   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圓柱底面周長為4cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側面繞3圈到B點,則這根棉線的長度最短為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以點A為頂點作等腰RtABC,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE,延長BDCE于點F.

1)試判斷BDCE的關系,并說明理由;

2)把兩個等腰直角三角形按如圖2所示放置,(1)中的結論是否仍成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產品運到B地.已知公路運價為1.5/(噸·千米),鐵路運價為1.2/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.

求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產品多少噸?

2)這批產品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點,ADBCDFBE,AE=CF

求證:(1AFD≌△CEB;

2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=41,則∠AOF等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在直線l外,點B在直線l上.

1)在l上求作一點C,在l外求作一點D,使得以AB、C、D為頂點的四邊形是菱形;(要求:用直尺和圓規(guī)作出所有大小不同的菱形)

2)連接AB,若AB5,且點A到直線l的距離為4,通過計算,找出(1)中面積最小的菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,EF分別是DCCB的延長線上的點,且DE=BF,連接AE、AF、EF

1)求證:ADE≌△ABF;

2BC=8DE=6,求AEF的面積.

查看答案和解析>>

同步練習冊答案