【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格圖中進行下列操作:

1利用網(wǎng)格確定該圓弧所在圓的圓心D點的位置,并寫出點D坐標為 ;

2連接AD、CD,則D的半徑為 結(jié)果保留根號,ADC的度數(shù)為

3若扇形DAC是一個圓錐的側(cè)面展開圖,則該圓錐底面半徑為 .(結(jié)果保留根號).

【答案】1作圖見解析,-1,0;2,90°;3

【解析】

試題分析:1根據(jù)線段垂直平分線性質(zhì)找出D即可;

2根據(jù)勾股定理即可求出CD,證CED≌△DOA,根據(jù)全等三角形的性質(zhì)求出COE=OAD,根據(jù)三角形內(nèi)角和定理即可求出ADC;

3根據(jù)弧長公式求出弧長,根據(jù)圓的周長公式求出即可

試題解析:1如圖:

D的坐標為-1,0).

2如圖:

設(shè)小正方形的邊長為1,由勾股定理得:CD=,

CED和DOA中

∴△CED≌△DOA,

∴∠COE=OAD,

∵∠AOD=90°,

∴∠OAD+ADO=90°,

∴∠ADC=180°-CDE+ADO=180°-OAD+ADO=180°-90°=90°

3的長為,

設(shè)圓錐底面半徑為r,

則2πr=,

解得:r=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,ABC的三個頂點分別為A(-3,4),B(-5,1)C(-1,2).

1)畫出ABC關(guān)于原點對稱的A1B1C1,并寫出點B1的坐標;

2)畫出ABC繞原點逆時針旋轉(zhuǎn)90°后的A2B2C2,并寫出點B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按如下方法,將ABC的三邊縮小的原來的,如圖,任取一點O,連AOBO、CO,并取它們的中點D、E、F,得DEF,則下列說法正確的個數(shù)是(  )

ABCDEF是位似圖形ABCDEF是相似圖形

ABCDEF的周長比為12ABCDEF的面積比為41

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C03),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新華商場為迎接家電下鄉(xiāng)活動銷售某種冰箱,每臺進價為2500元,市場調(diào)研表明;當銷售價定為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺,商場要想使這種冰箱的銷售利潤平均每天達到5000元,每臺冰箱的定價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度

A1,0的距離跨度______________

B-, 的距離跨度____________

C-3,-2的距離跨度____________;

根據(jù)中的結(jié)果猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________

2如圖2,在平面直角坐標系xOy,圖形G2為以D-1,0為圓心,2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點,k的取值范圍

3如圖3,在平面直角坐標系xOy射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運動,若射線OP上存在點到E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形 ABCD 中,AB5AD3.以點 B 為中心,順時針旋轉(zhuǎn)矩形 BADC,得到矩形 BEFG,點 A、D、C 的對應(yīng)點分別為 EF、G

1)如圖1,當點 E 落在 CD 邊上時,求線段 CE 的長;

2)如圖2,當點 E 落在線段 DF 上時,求證:∠ABD=∠EBD;

3)在(2)的條件下,CDBE 交于點 H,求線段 DH 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0x11,有下列結(jié)論:①abc0;②﹣3x2<﹣2;③4a2b+c<﹣1;④當m為任意實數(shù)時,abam2+bm;⑤若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1y2;⑥a.其中,正確結(jié)論的個數(shù)為( 。

A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案