【題目】如圖,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分別是E,F.求證:CE=DF.
【答案】證明:∵AC⊥BC,AD⊥BD,
∴∠ACB=∠ADB=90°.
在Rt△ABC和Rt△BAD中,
∴Rt△ABC≌Rt△BAD(HL).
∴∠CBA=∠DAB.
∵CE⊥AB,DF⊥AB,
∴∠CEB=∠DFA=90°.
在△BCE和△ADF中,
∴△BCE≌△ADF(AAS).
∴CE=DF
【解析】根據(jù)垂直的定義得出∠ACB=∠ADB=90°,∠CEB=∠DFA=90° ,然后利用HL判斷出Rt△ABC≌Rt△BAD ,根據(jù)全等三角形對應角相等得出∠CBA=∠DAB,然后根據(jù)AAS判斷出△BCE≌△ADF ,然后根據(jù)全等三角形對應邊相等得出CE=DF 。
科目:初中數(shù)學 來源: 題型:
【題目】若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,觀察前面計算過程,尋找計算規(guī)律計算
A73=(直接寫出計算結果),并比較A103A104(填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點E、F、G,連接ED、DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P與點Q不重合,以點P為圓心作經過Q的圓,則稱該圓為點P、Q的“相關圓”
(1)已知點P的坐標為(2,0)①若點Q的坐標為(0,1),求點P、Q的“相關圓”的面積;②若點Q的坐標為(3,n),且點P、Q的“相關圓”的半徑為,求n的值;
(2)已知△ABC為等邊三角形,點A和點B的坐標分別為(﹣,0)、(,0),點C在y軸正半軸上,若點P、Q的“相關圓”恰好是△ABC的內切圓且點Q在直線y=2x上,求點Q的坐標.
(3)已知△ABC三個頂點的坐標為:A(﹣3,0)、B(,0),C(0,4),點P的坐標為(0, ),點Q的坐標為(m, ),若點P、Q的“相關圓”與△ABC的三邊中至少一邊存在公共點,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(1,0)、B(3,2)、C(0,1)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)沿x軸向左平移2個單位,得到△A1B1C1,不畫圖直接寫出發(fā)生變化后的點的坐標。點的坐標是 ;
(2)以A點為位似中心,在網(wǎng)格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,則點的坐標是 ;
(3) △A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分12分)如圖,平行四邊形OBCD中,OB=8cm,BC=6cm,∠DOB=45°,點P從O沿OB邊向點B移動,點Q從點B沿BC邊向點C移動,P,Q同時出發(fā),速度都是1cm/s.
(1)求經過O,B,D三點的拋物線的解析式;
(2)判斷P,Q移動幾秒時,△PBQ為等腰三角形;
(3)若允許P點越過B點在BC上運動,Q點越過C點在CD上運動,設線PQ與OB,BC,DC圍成的圖形面積為y(cm2),點P,Q的移動時間為t(s),請寫出y與t之間的函數(shù)關系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題正確的個數(shù)是( )
①等腰三角形的腰長大于底邊長;
②三條線段、、,如果,那么這三條線段一定可以組成三角形;
③等腰三角形是軸對稱圖形,它的對稱軸是底邊上的高;
④面積相等的兩個三角形全等.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com