【題目】一如圖,在△ABC中,AB=41cm,BC=18cm,BC邊上的中線AD=40cm.△ABC是等腰三角形嗎?為什么?

【答案】解:△ABC是等腰三角形,
理由是:∵BC=18cm,BC邊上的中線為AD,
∴BD=CD=9cm
∵AB=41cm,BC=18cm,AD=40cm
∴AB2=1681,
BD2+AD2=1681,
∴AB2=BD2+AD2 ,
∴AD⊥BC
∵BD=CD,
∴AC=AB
∴△ABC是等腰三角形.
【解析】由已知可得BD的長,再根據(jù)勾股定理的逆定理可判定AD垂直BC,從而根據(jù)可利用勾股定理求得AC的長,此時發(fā)現(xiàn)AB=AC,即該三角形是等腰三角形.此題主要考查學(xué)生對勾股定理的逆定理及等腰三角形的判定線段的垂直平分線性質(zhì)的理解及運用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y(x+2)23的圖象的頂點坐標是______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點A、B、C,AB=60,點A對應(yīng)的數(shù)是40.
(1)若BC:AC=4:7,求點C到原點的距離;
(2)如圖2,在(1)的條件下,動點P、Q兩點同時從C、A出發(fā)向右運動,同時動點R從點A向左運動,已知點P的速度是點R的速度的3倍,點Q的速度是點R的速度2倍少5個單位長度/秒.經(jīng)過5秒,點P、Q之間的距離與點Q、R之間的距離相等,求動點Q的速度;
(3)如圖3,在(1)的條件下,O表示原點,動點P、T分別從C、O兩點同時出發(fā)向左運動,同時動點R從點A出發(fā)向右運動,點P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運動過程中,如果點M為線段PT的中點,點N為線段OR的中點.請問PT﹣MN的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對一個圖形進行放縮時,下列說法中正確的是(  ).
A.圖形中線段的長度與角的大小都保持不變
B.圖形中線段的長度與角的大小都會改變
C.圖形中線段的長度保持不變、角的大小可以改變
D.圖形中線段的長度可以改變、角的大小保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】開州區(qū)城區(qū)2018年底已有綠化面積700公頃,響應(yīng)青山綠水就是金山銀山的號召,綠化面積逐年增加,預(yù)計到2020年底 綠化面積增加到1000公頃,設(shè)綠化面積平均每年的增長率為x,由題意,所列方程正確的是( )

A.700(1x)1000B.700(1x)21000

C.700(12x)1000D.1000(1x)2700

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當a、b、c為何值時,代數(shù)式 有最小值?并求出這個最小值和此時以a、b、c值為邊的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)直角三角形的判定的知識解決下列問題
(1)如圖①所示,P是等邊△ABC內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;

(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某班40同學(xué)的一次數(shù)學(xué)成績進行統(tǒng)計,適當分組后80~90分這個分數(shù)段的劃記人數(shù)為“”,那么此班在這個分數(shù)段的人數(shù)占全班人數(shù)的百分比是(  )
A.20%
B.40%
C.8%
D.25%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直角三角形ABC沿AB方向平移AD距離得到直角三角形DEF.已知BE=4cm,EF=7cm,CG=3cm,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案