【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn): 與拋物線(xiàn)相交于點(diǎn)A(,7).
(1)求m,n的值;
(2)過(guò)點(diǎn)A作AB∥x軸交拋物線(xiàn)于點(diǎn)B,設(shè)拋物線(xiàn)與x軸交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),求△BCD的面積;
(3)點(diǎn)E(t,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作平行于y軸的直線(xiàn)與直線(xiàn)和拋物線(xiàn)分別交于點(diǎn)P、Q.當(dāng)點(diǎn)P在點(diǎn)Q上方時(shí),求線(xiàn)段PQ的最大值.
【答案】(1)m=1,n=3;(2)S△BCD=21;(3)PQ的最大值為9.
【解析】試題分析:
(1)把點(diǎn)A(-2,7)分別代入兩個(gè)函數(shù)的解析式即可求得m=1,n=3;
(2)由(1)中所得m=1可得拋物線(xiàn)的解析式為,令,求出對(duì)應(yīng)的的值即可求得C、D的坐標(biāo);根據(jù)點(diǎn)A的坐標(biāo)和AB∥軸交拋物線(xiàn)于點(diǎn)B,可求得點(diǎn)B的坐標(biāo),由此即可求出△BCD的面積;
(3)由題意,可知P(t,-2 t+3),Q( t,t2-4 t-5),可得PQ= -t2+2 t+8=-( t-2) 2+9;由一次函數(shù)和二次函數(shù)的解析式組成方程組,解方程組可求得兩函數(shù)圖象的交點(diǎn)坐標(biāo),從而可得求得當(dāng)點(diǎn)P在點(diǎn)Q上方時(shí),t的取值范圍,結(jié)合所得PQ= -t2+2 t+8=-( t-2) 2+9即可求得PQ的最大值.
試題解析:
(1)把點(diǎn)A(-2,7)分別代入兩個(gè)函數(shù)的解析式得:
,解得:m=1,n=3;
(2)由m=1可得拋物線(xiàn)表達(dá)式為y=x2-4x-5,
令y=0得,x2-4x-5=0. 解得x1=-1,x2=5,
∴拋物線(xiàn)y=x2-4x-5與x軸得兩個(gè)交點(diǎn)C、D的坐標(biāo)分別為C(-1,0),D(5,0),
∴CD=6,
∵A(-2,7),AB∥x軸交拋物線(xiàn)于點(diǎn)B,根據(jù)拋物線(xiàn)的軸對(duì)稱(chēng)性,可得B(6,7),
∴S△BCD=21;
(3)由題意,可知P(t,-2 t+3),Q( t,t2-4 t-5),
由 解得: , ,
∴直線(xiàn)y=-2x+3與拋物線(xiàn)y= x2-4x-5的兩個(gè)交點(diǎn)坐標(biāo)分別為(-2,7)和(4,-5),
∵點(diǎn)P在點(diǎn)Q上方,
∴-2<t<4,
又∵在PQ= -t2+2 t+8=-( t-2) 2+9中,a=-1<0,
∴PQ的最大值為9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件25元時(shí),每天可賣(mài)出250件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,一件商品每漲價(jià)1元,每天要少賣(mài)出10件.
(1)求出每天所得的銷(xiāo)售利潤(rùn)w(元)與每件漲價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該商品每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部在調(diào)控價(jià)格方面,提出了A,B兩種營(yíng)銷(xiāo)方案.
方案A:每件商品漲價(jià)不超過(guò)5元;
方案B:每件商品的利潤(rùn)至少為16元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】晨光文具店有一套體育用品:1個(gè)籃球,1個(gè)排球和1個(gè)足球,一套售價(jià)300元,也可以單獨(dú)出售,小攀同學(xué)共有50元、20元、10元三種面額鈔票各若干張.如果單獨(dú)出售,每個(gè)球只能用到同一種面額的鈔票去購(gòu)買(mǎi).若小面額的錢(qián)的張數(shù)恰等于另兩種面額錢(qián)張數(shù)的乘積,那么所有可能中單獨(dú)購(gòu)買(mǎi)三個(gè)球中所用到的錢(qián)最少的一個(gè)球是___________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,∠BAD=∠CDA=90°,AB=,CD=2,過(guò)A,B,D三點(diǎn)的☉O分別交BC,CD于點(diǎn)E,M,且CE=2,下列結(jié)論:①DM=CM;②弧AB=弧EM;③☉O的直徑為2;④AE=.其中正確的結(jié)論是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)求m的值;
(3)在給定的直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象;
(4)根據(jù)圖象,寫(xiě)出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖像可能是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列例題的解答過(guò)程:解方程:3(x﹣2)2+7(x﹣2)+4=0.
解:設(shè) x﹣2=y,則原方程化為:3y2+7y+4=0.
∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.
∴y= =.∴y1=﹣1,y2=﹣ .
當(dāng) y=﹣1 時(shí),x﹣2=﹣1,∴x=1;
當(dāng) y=﹣時(shí),x﹣2=﹣,∴x= .
∴原方程的解為:x1=1,x2=.
(1)請(qǐng)仿照上面的例題解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;
(2)若(a2+b2)(a2+b2﹣2)=3,求代數(shù)式 a2+b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線(xiàn)AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線(xiàn)上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線(xiàn)AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn).垂足為F,連接EF,當(dāng)線(xiàn)段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com