【題目】如圖,已知,△ABC中,∠A=60,BD,CE是△ABC的兩條角平分線,BD,CE相交于點(diǎn)O,求證:BC=CD+BE.

【答案】詳見解析.

【解析】

BC上找到F使得BF=BE,易證∠BOE=∠COD=60°,即可證明△BOE≌△BOF,可得∠BOF=∠BOE=60°,即可證明△OCF≌△OCD,可得CF=CD,根據(jù)BC=BF+CF即可解決問題.

證明:在BC上找到F使得BF=BE,

∵∠A=60°,BD、CE是△ABC的角平分線,

∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=120°,

∴∠BOE=∠COD=60°,

在△BOE和△BOF中,

∴△BOE≌△BOF,(SAS)

∴∠BOF=∠BOE=60°,

∴∠COF=∠BOC-∠BOF=60°,

在△OCF和△OCD中,,

∴△OCF≌△OCD(ASA),

∴CF=CD,

∵BC=BF+CF,

∴BC=BE+CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三邊AB、BCCA長(zhǎng)分別為30、4050.其三條角平分線交于點(diǎn)O,則SABO SBCO SCAO =______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,每個(gè)小方格的邊長(zhǎng)為一個(gè)單位長(zhǎng)度.

1)點(diǎn)的坐標(biāo)為 .點(diǎn)的坐標(biāo)為 .

2)點(diǎn)關(guān)于軸對(duì)稱點(diǎn)的坐標(biāo)為

3)以、為頂點(diǎn)的三角形的面積為 ;

4)點(diǎn)軸上,且的面積等于的面積,點(diǎn)的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人以相同路線前往離學(xué)校12千米的地方參加植樹活動(dòng).分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時(shí)間t(分鐘)變化的函數(shù)圖象,解決下列問題:

(1)求出甲、乙兩人所行駛的路程S、St之間的關(guān)系式;

(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩艘客輪同時(shí)離開港口,航行的速度都是40m/min,甲客輪用15min到達(dá)點(diǎn)A,乙客輪用20min到達(dá)點(diǎn)B,若A,B兩點(diǎn)的直線距離為1000m,甲客輪沿著北偏東30°的方向航行,則乙客輪的航行方向可能是( 。

A. 北偏西30° B. 南偏西30° C. 南偏東60° D. 南偏西60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)放置在地面上的長(zhǎng)方體,長(zhǎng)為15cm,寬為10cm,高為20cm,點(diǎn)B與點(diǎn)C的距離為5cm,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)熱氣球懸停在空中,從熱氣球上的P點(diǎn)測(cè)得直立于地面的旗桿AB的頂端A與底端B的俯角分別為34°45°,此時(shí)P點(diǎn)距地面高度PC75米,求旗桿AB的高度(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在精準(zhǔn)扶貧政策的扶持下,貧困戶老李今年試種的百香果獲得大豐收,共收獲2 000千克.扶貧小組幫助他將百香果按照品質(zhì)從高到低分成A,B,C,D,E五個(gè)等級(jí),并根據(jù)數(shù)據(jù)繪制了如下的扇形統(tǒng)計(jì)圖和頻數(shù)分布表:

請(qǐng)根據(jù)圖表信息解答下列問題:

1____________________;__________

2)求扇形統(tǒng)計(jì)圖中“E”所對(duì)應(yīng)的圓心角的度數(shù);

3)為了幫助貧困戶老李銷售百香果,扶貧小組聯(lián)系了甲、乙兩位經(jīng)銷商.他們分別給出如下收購(gòu)方案:

甲:全部按5/千克收購(gòu);

乙:按等級(jí)收購(gòu):C等級(jí)單價(jià)為6.5/千克,每提高一個(gè)等級(jí)單價(jià)提高1/千克,剩下的D,E兩個(gè)等級(jí)單價(jià)均為2/千克.

請(qǐng)你通過計(jì)算,判斷哪個(gè)經(jīng)銷商的方案使老李盈利更多.

查看答案和解析>>

同步練習(xí)冊(cè)答案