【題目】如圖,四邊形ABCD是⊙O的內接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.
(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.
【答案】(1);(2);(3)證明見試題解析.
【解析】
試題分析:(1)由切線的性質和正方形的判定與性質得出⊙O的半徑即可;
(2)由垂徑定理得出OE⊥BC,∠OCE=45°,再用勾股定理即可得出結論;
(3)在AB上截取BF=BM,利用(1)中所求,得出∠ECP=135°,再利用全等三角形的判定與性質得出即可.
試題解析:(1)如圖1,連接OD,OC,∵PC、PD是⊙O的兩條切線,C、D為切點,∴∠ODP=∠OCP=90°,∵四邊形ABCD是⊙O的內接正方形,∴∠DOC=90°,OD=OC,∴四邊形DOCP是正方形,∵AB=4,∠ODC=∠OCD=45°,∴DO=CO=DCsin45°=×4=;
(2)如圖1,連接EO,OP,∵點E是BC的中點,∴OE⊥BC,∠OCE=45°,則∠E0P=90°,∴EO=EC=2,OP=CO=4,∴PE==;
(3)如圖2,在AB上截取BF=BM,∵AB=BC,BF=BM,∴AF=MC,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC,∵由(1)得:PD=PC,∠DPC=90°,∴∠DCP=45°,∴∠MCN=135°,∵∠AFM=180°﹣∠BFM=135°,在△AFM和△CMN中,∵∠FAM=∠CMN,AF=MC,∠AFM=∠MCN,∴△AFM≌△CMN(ASA),∴AM=MN.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,三個內角的平分線AD、BM、CN交于點O,OE⊥BC于點E.
(1)求∠ABO+∠BCO+∠CAO的度數;
(2)∠BOD與∠COE是否相等?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】供電局的電力維修工要到30千米遠的郊區(qū)進行電力搶修.技術工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結果他們同時到達.已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育課上全班男生進行了百米測試,達標成績?yōu)?4秒,下面是第一小組8名男生的成績記錄,其中“+”表示成績大于14秒,“﹣”表示成績小于14秒
﹣1 | +0.8 | 0 | ﹣1.2 | ﹣0.1 | 0 | +0.5 | ﹣0.6 |
(1)求這個小組的男生達標率是多少?
(2)求這個小組8名男生的平均成績是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調查數據進行了整理,繪制成部分統(tǒng)計圖如下:
請根據圖中信息,解答下列問題:
(1)該調查的樣本容量為 , =%, =%,“常!睂刃蔚膱A心角的度數為;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有3200名學生,請你估計其中“總是”對錯題進行整理、分析、改正的
學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為加強公民的節(jié)水意識,合理利用水資源.某市對居民用水實行階梯水價,居民家庭每月用水量劃分為三個階梯,一、二、三級階梯用水的單價之比等于1:1.5:2.如圖折線表示實行階梯水價后每月水費y(元)與用水量xm3之間的函數關系.其中線段AB表示第二級階梯時y與x之間的函數關系.
(1)寫出點B的實際意義;
(2)求線段AB所在直線的表達式;
(3)某戶5月份按照階梯水價應繳水費102元,其相應用水量為多少立方米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com