【題目】為了積極響應(yīng)國家新農(nóng)村建設(shè),某市鎮(zhèn)政府采用了移動宣講的形式進(jìn)行宣傳動員.如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為800米,假使宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:
(1)請問村莊能否聽到宣傳,并說明理由;
(2)如果能聽到,已知宣講車的速度是每分鐘300米,那么村莊總共能聽到多長時間的宣傳?
【答案】(1)村莊能聽到宣傳. 理由見解析;(2)村莊總共能聽到4分鐘的宣傳.
【解析】
(1)根據(jù)題意村莊A到公路MN的距離為800米<1000米,即可解答
(2)假設(shè)當(dāng)宣講車行駛到P點開始影響村莊,行駛Q點結(jié)束對村莊的影響
解:(1)村莊能聽到宣傳.
理由:因為村莊A到公路MN的距離為800米<1000米,所以村莊能聽到宣傳
(2)如圖,假設(shè)當(dāng)宣講車行駛到P點開始影響村莊,行駛Q點結(jié)束對村莊的影響,利用勾股定理進(jìn)行計算即可解答
則AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影響村莊的時間為:1200÷300=4(分鐘).
∴村莊總共能聽到4分鐘的宣傳.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線、的交點,、分別是、的中點.下列結(jié)論:①;②四邊形也是菱形;③四邊形的面積為;④;⑤是軸對稱圖形.其中正確的結(jié)論有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)造了一幅“弦圖”后人稱其為“趙爽弦圖”(如圖1).圖2是弦圖變化得到,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解題過程,請你根據(jù)圖形補充完整.
解:設(shè)每個直角三角形的面積為S
S1﹣S2= (用含S的代數(shù)式表示)①
S2﹣S3= (用含S的代數(shù)式表示)②
由①,②得,S1+S3= 因為S1+S2+S3=10,
所以2S2+S2=10.
所以S2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,BC是⊙O的切線,OC∥弦AD
(1)求證:CD是⊙O的切線;
(2)如圖2,連AC交BD于E.若AE=CE,求tan∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,D為BC的中點,過點C作于點G,過點B作于點B,交CG的延長線于點F,連接DF交AB于點E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O
(1)求證:△AEC≌△BED;
(2)若∠1=38°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:中,.
求作邊上的垂直平分線,使得交于;將線段沿著的方向平移到線段(其中點平移到點,畫出平移后的線段;(要求用尺規(guī)作圖,不寫作法,保留作圖痕跡.)
連接、,試判斷四邊形是矩形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】百匯超市服裝柜在銷售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出件,每件盈利元.為了迎接“元旦”,商場決定采取適降價措施,擴(kuò)大銷售量,增加盈利,減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價元,那么平均每天就可多售出件.
如果每件降價元,那么平均每天可售出幾件?
要想平均每天銷售這種童裝上盈利元,那么每件童裝應(yīng)降價多少元?
用配方法說明:要想盈利最多,每件童裝應(yīng)降價多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com