【題目】如圖,拋物線與軸交于,兩點.
(1)求該拋物線的解析式;
(2)若拋物線交軸于點,在該拋物線的對稱軸上是否存在點,使得的周長最小?若存在,求出點的坐標;若不存在,請說明理由
【答案】(1);(2)存在,當(dāng)的周長最小時,點的坐標為.
【解析】
(1)直接利用待定系數(shù)求出二次函數(shù)解析式即可;
(2)首先求出直線BC的解析式,再利用軸對稱求最短路線的方法得出答案.
(1)拋物線與軸交于兩點
解得:
該拋物線的解析式為
(2)該拋物線的對稱軸上存在點,使得的周長最。
如解圖所示,作點關(guān)于拋物線對稱軸的對稱點,連接,
交對稱軸于點,連接,
點關(guān)于拋物線對稱軸的對稱點,且,交對稱軸于點
,
的周長為,
為拋物線對稱軸上一點,
的周長,
當(dāng)點處在解圖位置時,的周長最。
在中,當(dāng)時,,
,
,
拋物線的對稱軸為直線,
點是點關(guān)于拋物線對稱軸直線的對稱點,且.
設(shè)過點兩點的直線的解析式為:,
在直線上,
,解得:,
直線的解析式為:,
拋物線對稱軸為直線,且直線與拋物線對稱軸交于點,
在中,當(dāng)時,,
,
在該拋物線的對稱軸上存在點,使得的周長最小,當(dāng)的周長最小時,點的坐標為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1個單位長度),點,,都在格點上,以為坐標原點建立平面直角坐標系.
(1)分別寫出點,的坐標:________,畫出線段繞著點逆時針旋轉(zhuǎn)的線段;
(2)若線段的中點在反比例函數(shù)的圖象上,則的值為________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,張老師引導(dǎo)同學(xué)進行如下探究:如圖1,將長為的鉛筆斜靠在垂直于水平桌面的直尺的邊沿上,一端固定在桌面上,圖2是示意圖.
活動一
如圖3,將鉛筆繞端點順時針旋轉(zhuǎn),與交于點,當(dāng)旋轉(zhuǎn)至水平位置時,鉛筆的中點與點重合.
數(shù)學(xué)思考
(1)設(shè),點到的距離.
①用含的代數(shù)式表示:的長是_________,的長是________;
②與的函數(shù)關(guān)系式是_____________,自變量的取值范圍是____________.
活動二
(2)①列表:根據(jù)(1)中所求函數(shù)關(guān)系式計算并補全表格.
6 | 5 | 4 | 3.5 | 3 | 2.5 | 2 | 1 | 0.5 | 0 | |
0 | 0.55 | 1.2 | 1.58 | 1.0 | 2.47 | 3 | 4.29 | 5.08 |
②描點:根據(jù)表中數(shù)值,描出①中剩余的兩個點.
③連線:在平面直角坐標系中,請用平滑的曲線畫出該函數(shù)的圖象.
數(shù)學(xué)思考
(3)請你結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì)或結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A1(1,),A2(,),A3(2,),A4(3,0).作折線A1A2A3A4關(guān)于點A4的中心對稱圖形,再做出新的折線關(guān)于與x軸的下一個交點的中心對稱圖形……以此類推,得到一個大的折線.現(xiàn)有一動點P從原點O出發(fā),沿著折線一每秒1個單位的速度移動,設(shè)運動時間為t.當(dāng)t=2020時,點P的坐標為( 。
A.(1010,)B.(2020,)C.(2016,0)D.(1010,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”國際勞動節(jié),某商場計劃購進甲、乙兩種品牌的恤衫共100件,已知乙品牌每件的進價比甲品牌每件的進價貴30元,且用120元購買甲品牌的件數(shù)恰好是購買乙品牌件數(shù)的2倍.
(1)求甲、乙兩種品牌每件的進價分別是多少元?
(2)商場決定甲品牌以每件50元出售,乙品牌以每件100元出售.為滿足市場需求,購進甲種品牌的數(shù)量不少于乙種品牌數(shù)量的4倍,請你確定獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F是線段BC上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是( )
A. 2﹣2B. 6C. 2﹣2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像交軸于,交軸于,過畫直線。
(1)求二次函數(shù)的解析式;
(2)點在軸正半軸上,且,求的長;
(3)點在二次函數(shù)圖像上,以為圓心的圓與直線相切,切點為。
① 點在軸右側(cè),且(點與點對應(yīng)),求點的坐標;
② 若的半徑為,求點的坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣6x+m滿足以下條件:當(dāng)﹣2<x<﹣1時,它的圖象位于x軸的下方;當(dāng)8<x<9時,它的圖象位于x軸的上方,則m的值為( )
A.27B.9C.﹣7D.﹣16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com