【題目】如圖,已知點(diǎn)A是反比例函數(shù) 的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為 .
【答案】
【解析】∵點(diǎn)A是反比例函數(shù) 的圖象上的一個(gè)動(dòng)點(diǎn),設(shè)A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,
∴AC=n,OC=﹣m,
∴∠ACO=∠ADO=90°,
∵∠AOB=90°,
∴∠CAO+∠AOC=∠AOC+∠BOD=90°,
∴∠CAO=∠BOD,
在△ACO與△ODB中,
∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
∴△ACO≌△ODB,
∴AC=OD=n,CO=BD=﹣m,
∴B(n,﹣m),
∵mn=﹣2,
∴n(﹣m)=2,
∴點(diǎn)B所在圖象的函數(shù)表達(dá)式為 ,
故答案為: .
過A作AC⊥x軸于C,過B作BD⊥x軸于D,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AO=BO,再證明∠ACO=∠ODB,∠CAO=∠BOD,可得出OC=BD,AC=OD,然后求出mn的值即可得出點(diǎn)B所在圖象的函數(shù)解析式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=bx2+a的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
(1)如圖1,中,若,,求邊上的中線的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,把、、集中在中,利用三角形的三邊關(guān)系可得,則;
(2)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在中,是邊上的中點(diǎn),,交于點(diǎn),交于點(diǎn),連接.
①求證:;
②如圖3,若,探索線段、、之間的等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,∠3+∠4=180°,要證∠1=∠2,請完善證明過程,并在括號內(nèi)填上相應(yīng)依據(jù):
∵AD∥BC(已知)
∴∠l=∠3( ),
∵∠3+∠4=180°(已知),
∴BE∥DF( ),
∴ = ( ).
∴∠1=∠2( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F(xiàn),AE,CF分別與BD交于點(diǎn)G和H,且AB= .
(1)若tan∠ABE =2,求CF的長;
(2)求證:BG=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在邊上,點(diǎn)為邊上一動(dòng)點(diǎn),連接與關(guān)于所在直線對稱,點(diǎn)分別為的中點(diǎn),連接并延長交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),的長為_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比思想就是根據(jù)已經(jīng)學(xué)習(xí)過的知識(shí),類比探究新知識(shí)的思想方法.我們在探究矩形、菱形、正方形等問題中的數(shù)量關(guān)系時(shí),經(jīng)常用到類比思想.某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:在中,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與重合),以為邊在右側(cè)作正方形連接.
(1)(觀察猜想)如圖①,當(dāng)點(diǎn)在線段上時(shí);
①與的位置關(guān)系為: ;
②之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)(數(shù)學(xué)思考)如圖②,當(dāng)點(diǎn)在線段的延長線上時(shí),結(jié)論①②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(3)(拓展延伸)如圖③,當(dāng)點(diǎn)在線段的延長線上時(shí),延長交于點(diǎn),連接.若已知請直接寫出的長.(提示: .過作于過作于于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上小山的兩側(cè)有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達(dá)C處,此時(shí)熱氣球上的人測得CB與AB成70°角,請你用測得的數(shù)據(jù)求A,B兩地的距離AB長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com