精英家教網 > 初中數學 > 題目詳情

先閱讀,再回答問題:
因為數學公式,且1<數學公式<2,所以數學公式的整數部分是1;
因為數學公式,且2<數學公式<3,所以數學公式的整數部分是2;
因為數學公式,且3<數學公式<4,所以數學公式的整數部分是3.
以此類推,我們會發(fā)現數學公式的整數部分是________,理由為________.

a    
分析:比較被開方數與所給數值的大小,可發(fā)現:a2<a2+a<(a+1)2;故的整數部分為a.
解答:∵a為正整數,
∴a2<a2+a,
∴a2+a=a(a+1)<(a+1)2,
∴a2<a2+a<(a+1)2
,
的整數部分是a.
故答案為:a,
點評:此題主要考查了無理數的估算能力,解決本題的關鍵是找到相應的規(guī)律;并根據規(guī)律得出結論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

先閱讀,再回答問題:
如果x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,那么x1+x2,x1x2與系數a,b,c的關系是:x1+x2=-
b
a
,x1x2=
c
a
.例如:若x1,x2是方程2x2-x-1=0的兩個根,則x1+x2=-
b
a
=-
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個根,則x1+x2=
 
,x1x2=
 

(2)若x1,x2是方程x2+x-3=0的兩個根,求
x2
x1
+
x1
x2
的值.
解:(1)x1+x2=
 
,x1x2=
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

先閱讀,再回答問題:
如果x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,那么x1+x2,x1x2與系數a,b,c的關系是:x1+x2=-
b
a
,x1x2=
c
a
.例如:若x1,x2是方程2x2-x-1=0的兩個根,則x1+x2=-
b
a
=-
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2
.若x1,x2是方程2x2+x-3=0的兩個根,
(1)求x1+x2,x1x2
(2)求
x2
x1
+
x1
x2
的值.
(3)求(x1-x22

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

先閱讀,再回答問題:
如果x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,那么x1+x2,x1x2與系數a,b,c的關系是:x1+x2=-
b
a
,x1x2=
c
a
.例如x1,x2是方程2x2-x-1=0的兩個根,則x1+x2=-
a
b
=
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個根,則x1+x2=
-
1
2
-
1
2
,x1x2
-
3
2
-
3
2
;
(2)若x1,x2是方程x2+x-3=0的兩個根,求
x2
x1
+
x1
x2
的值;
(3)若x1,x2是方程x2+(4k+1)x+2k-1=0的兩個實數根,且(x1-2)(x2-2)=2k-3,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

先閱讀,再回答問題:
如果x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根那么x1+x2,x1x2與系數a,b,c的關系是:x1+x2=-
b
a
=-
-1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個根,則x1+x2=-
1
2
,x1x2=-
3
2
;
(2)若x1,x2是方程x2+x-3=0的兩個根,求
x2
x1
+
x1
x2
的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

先閱讀,再回答問題:
因為
12+1
=
2
,且1<
2
<2,所以
12+1
的整數部分是1;
因為
22+2
=
6
,且2<
6
<3,所以
22+2
的整數部分是2;
因為
32+3
=
12
,且3<
12
<4,所以
32+3
的整數部分是3.
以此類推,我們會發(fā)現
a2+a
的整數部分是
a
a
,理由為
a<
a2+a
<a+1
a<
a2+a
<a+1

查看答案和解析>>

同步練習冊答案