【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過(guò)點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)證明見解析(2)證明見解析(3)△ACN仍為等腰直角三角形
【解析】
試題分析:(1)由EN∥AD和點(diǎn)M為DE的中點(diǎn)可以證到△ADM≌△NEM,從而證到M為AN的中點(diǎn).
(2)易證AB=DA=NE,∠ABC=∠NEC=135°,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.
(3)延長(zhǎng)AB交NE于點(diǎn)F,易得△ADM≌△NEM,根據(jù)四邊形BCEF內(nèi)角和,可得∠ABC=∠FEC,從而可以證到△ABC≌△NEC,進(jìn)而可以證到AC=NC,∠ACN=∠BCE=90°,則有△ACN為等腰直角三角形.
試題解析:(1)如圖1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵點(diǎn)M為DE的中點(diǎn),
∴DM=EM.
在△ADM和△NEM中,
∴.
∴△ADM≌△NEM.
∴AM=MN.
∴M為AN的中點(diǎn).
(2)如圖2,
∵△BAD和△BCE均為等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三點(diǎn)在同一直線上,
∴∠ABC=180°﹣∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
(3)△ACN仍為等腰直角三角形.
證明:如圖3,延長(zhǎng)AB交NE于點(diǎn)F,
∵AD∥NE,M為中點(diǎn),
∴易得△ADM≌△NEM,
∴AD=NE.
∵AD=AB,
∴AB=NE.
∵AD∥NE,
∴AF⊥NE,
在四邊形BCEF中,
∵∠BCE=∠BFE=90°
∴∠FBC+∠FEC=360°﹣180°=180°
∵∠FBC+∠ABC=180°
∴∠ABC=∠FEC
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 下列事件中,屬于必然事件的是( )
A. “世界杯新秀”姆巴佩發(fā)點(diǎn)球 100%進(jìn)球
B. 任意購(gòu)買一張車票,座位剛好挨著窗口
C. 三角形內(nèi)角和為 180°
D. 敘利亞不會(huì)發(fā)生戰(zhàn)爭(zhēng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】月球軌道呈橢圓形,近地點(diǎn)平均距離為363300千米,遠(yuǎn)地點(diǎn)平均距離為405500千米 , 用科學(xué)記數(shù)法表示 : 近地點(diǎn)平均距離為 , 遠(yuǎn)地點(diǎn)平均距離為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線y=2(x-1)2+1向左平移1個(gè)單位長(zhǎng)度,得到的拋物線的解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(2,-3)關(guān)于x軸的對(duì)稱點(diǎn)是( )
A. (-2,3) B. (2,3) C. (-2,-3) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)立方體的體積是216 cm3,則這個(gè)立方體的棱長(zhǎng)是__________cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com