【題目】在一副撲克牌中,拿出紅桃2、紅桃3、紅桃4、紅桃5四張牌,洗勻后,小明從中隨機(jī)摸出一張,記下牌面上的數(shù)字為x,然后放回并洗勻,再由小華隨機(jī)摸出一張,記下牌面上的數(shù)字為y,組成一對數(shù)(x,y).用列表法或樹形圖表示出(x,y)的所用可能出現(xiàn)的結(jié)果;求小明、小華各摸一次撲克牌所確定的一對數(shù)是方程x+y=5的解的概率.

【答案】(1)見表;(2)

【解析】

依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,從數(shù)對中找出方程x+y=5的解,然后根據(jù)概率公式求出該事件的概率即可解答.

列表得:

紅桃2

紅桃3

紅桃4

紅桃5

紅桃2

2,2

2,3

2,4

2,5

紅桃3

3,2

3,3

3,4

3,5

紅桃4

4,2

4,3

4,4

4,5

紅桃5

5,2

5,3

5,4

5,5

觀察表格可知一共有16種可能出現(xiàn)的結(jié)果;

其中滿足x+y=5有的兩種,所以P(和等于5)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.

(1)B出發(fā)時與A相距 千米.

(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時間是 小時.

(3)B出發(fā)后 小時與A相遇.

(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC中,∠BAC90°,ADBCD,∠ABC的平分線分別交AC、ADEF兩點,MEF的中點,延長AMBC于點N,連接DM,下列結(jié)論:①AEAF;②DFDN;③AECN;④△AMD和△DMN的面積相等,其中錯誤的結(jié)論個數(shù)是( 。

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(2)班課題研究小組對本校初三段全體同學(xué)的體育達(dá)標(biāo)(體育成績60分以上,含60分)情況進(jìn)行調(diào)查,他們對本班50名同學(xué)的體育達(dá)標(biāo)情況和其余班級同學(xué)的體育達(dá)標(biāo)情況分別進(jìn)行調(diào)查,數(shù)據(jù)統(tǒng)計如下:

根據(jù)以上統(tǒng)計圖,請解答下面問題:

(1)初三(2)班同學(xué)體育達(dá)標(biāo)率和初三段其余班級同學(xué)達(dá)標(biāo)率各是多少?

(2)如果全段同學(xué)的體育達(dá)標(biāo)率不低于90%,則全段同學(xué)人數(shù)不超過多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)x2-4x-1=0;    

(2)x2+3x-2=0;

(3)2x2+3x+3=0;    

(4)(2x-1)2=x(3x+2)-7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.

(1)若點E是BC的中點(如圖1),AE與EF相等嗎?

(2)點E在BC間運(yùn)動時(如圖2),設(shè)BE=x,△ECF的面積為y。

①求y與x的函數(shù)關(guān)系式;

②當(dāng)x取何值時,y有最大值,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,AB=2,則圖中陰影部分的面積為(  )

A. π B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結(jié)論個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案