【題目】用配方法解一元二次方程x2+8x+7=0,則方程可化為( 。
A. (x+4)2=9 B. (x﹣4)2=9 C. (x+8)2=23 D. (x﹣8)2=9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按下列規(guī)律排列的一列數(shù)對(duì)(1,2)、(4,5)、(7,8)、……,則第10個(gè)數(shù)對(duì)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知拋物線y=k(x+1)(x﹣3k)(且k>0)與x軸分別交于A、B兩點(diǎn),A點(diǎn)在B點(diǎn)左邊,與Y軸交于C點(diǎn),連接BC,過(guò)A點(diǎn)作AE∥CB交拋物線于E點(diǎn),0為坐標(biāo)原點(diǎn).
(1)用k表示點(diǎn)C的坐標(biāo)(0, );
(2)若k=1,連接BE,
①求出點(diǎn)E的坐標(biāo);
②在x軸上找點(diǎn)P,使以P、B、C為頂點(diǎn)的三角形與△ABE相似,求出P點(diǎn)坐標(biāo);
(3)若在直線AE上存在唯一的一點(diǎn)Q,連接OQ、BQ,使OQ⊥BQ,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于拋物線y=(x-1)2-2,下列說(shuō)法中錯(cuò)誤的是( )
A.頂點(diǎn)坐標(biāo)為(1,-2)
B.對(duì)稱軸是直線x=1
C.當(dāng)x>1時(shí),y隨x的增大而減小
D.開(kāi)口方向向上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:(指坡面的鉛直高度與水平寬度的比),且AB=20m.身高為1.7m的小明站在大堤A點(diǎn),測(cè)得髙壓電線桿頂端點(diǎn)D的仰角為30°.已知地面CB寬30m,求髙壓電線桿CD的髙度(結(jié)果保留三個(gè)有效數(shù)字,≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:在四邊形ABCD(圖2)中,取對(duì)角線BD的中點(diǎn)O,連接OA、OC.得折線AOC,再過(guò)點(diǎn)O作OE∥AC交CD于E,則直線AE即為四邊形ABCD的一條“好線”.
(1)如圖,試說(shuō)明中線AD平分△ABC的面積;
(2)如圖,請(qǐng)你探究四邊形ABCO的面積和四邊形ABCD面積的關(guān)系,并說(shuō)明理由;
(3)在上圖中,請(qǐng)你說(shuō)明直線AE是四邊形ABCD的一條“好線”;
(4)如圖,若AE為一條“好線”,F(xiàn)為AD邊上的一點(diǎn),請(qǐng)作出四邊形ABCD經(jīng)過(guò)F點(diǎn)的“好線”,并對(duì)你的畫圖作適當(dāng)說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程9x2﹣6x+k=0有兩個(gè)不相等的實(shí)根,則k的范圍是( )
A.k<1
B.k>1
C.k≤1
D.k≥1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com