【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:
解方程﹣=1
老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進(jìn)行了解答,小明同學(xué)的解題過程如下:
解:方程兩邊同時(shí)乘以6,得×6﹣×6=1…………①
去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②
去括號(hào),得:4﹣6x﹣3x+15=1……………③
移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…………④
合并同類項(xiàng),得﹣9x=﹣18……………⑤
系數(shù)化1,得:x=2………………⑥
上述小明的解題過程從第 步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是 .
請(qǐng)幫小明改正錯(cuò)誤,寫出完整的解題過程.
【答案】①;利用等式的性質(zhì)漏乘,x=
【解析】
檢查小明同學(xué)的解題過程,找出出錯(cuò)的步驟,以及錯(cuò)誤的原因,寫出正確的解題過程即可.
第①步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是利用等式的性質(zhì)漏乘;
故答案為:①;利用等式的性質(zhì)漏乘;
正確的解題過程為:
解:方程兩邊同時(shí)乘以6,得:×6﹣×6=6,
去分母,得:2(2﹣3x)﹣3(x﹣5)=6,
去括號(hào),得:4﹣6x﹣3x+15=6,
移項(xiàng),得:﹣6x﹣3x=6﹣4﹣15,
合并同類項(xiàng),得:﹣9x=﹣13,
系數(shù)化1,得:x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形有一組對(duì)角互補(bǔ)(即對(duì)角之和為180°),則稱這個(gè)四邊形為圓滿四邊形.
(1)概念理解:在平行四邊形、菱形、矩形、正方形中,你認(rèn)為屬于圓滿四邊形的有 .
(2)問題探究:如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,若∠ADB=∠ACB,問四邊形ABCD是圓滿四邊形嗎?請(qǐng)說明理由.小明經(jīng)過思考后,判斷四邊形ABCD是圓滿四邊形,并提出了如下探究思路:先證明△AOD∽△BOC,得到比例式 = ,再證明△AOB∽△DOC,得出對(duì)應(yīng)角相等,根據(jù)四邊形內(nèi)角和定理,得出一組對(duì)角互補(bǔ).請(qǐng)你幫助小明寫出解題過程.
(3)問題解決:請(qǐng)結(jié)合上述解題中所積累的經(jīng)驗(yàn)和知識(shí)完成下題.如圖,四邊形ABCD中,AD⊥BD,AC⊥BC,AB與DC的延長(zhǎng)線相交于點(diǎn)E,BE=BD,AB=5,AD=3,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-3,0),點(diǎn)B在軸上,直線y=-2x+a經(jīng)過點(diǎn)B與軸交于點(diǎn)(0, 6),直線AD與直線y=-2x+a相交于點(diǎn)D(-1,n).
(1)求直線AD的表達(dá)式;
(2)點(diǎn)M是直線y=-2x+a上的一點(diǎn)(不與點(diǎn)B重合),且點(diǎn)M的橫坐標(biāo)為m,求△ABM的面積S與m之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當(dāng)小明從燈甲底部向燈乙底部直行16米時(shí),發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為( )
A.7米
B.8米
C.9米
D.10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
點(diǎn)M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點(diǎn)A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點(diǎn)的距離?
(3)點(diǎn)P為數(shù)軸上一點(diǎn),其表示的數(shù)為x,用含有x的式子表示BP= ,當(dāng)BP=4時(shí),x= ;當(dāng)|x﹣3|+|x+2|的值最小時(shí),x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=nAD,點(diǎn)E,F(xiàn)分別在邊AB,AD上且不與頂點(diǎn)A,B,D重合,∠AEF=∠BCE,圈O過A,E,F(xiàn)三點(diǎn).
(1)求證:圈O與CE相切與點(diǎn)E;
(2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
(3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李叔叔在“中央山水”買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,這套住宅的建筑平面(由四個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:米),請(qǐng)解答下問題:
(1)用式子表示這所住宅的總面積;
(2)若鋪1平方米地磚平均費(fèi)用120元,求當(dāng)x=6時(shí),這套住宅鋪地磚總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,每個(gè)小立方體的棱長(zhǎng)為1,圖1中共有1個(gè)立方體,其中1個(gè)看得見,0個(gè)看不見;圖2中共有8個(gè)小立方體,其中7個(gè)看得見,1個(gè)看不見;圖3中共有27個(gè)小立方體,其中19個(gè)看得見,8個(gè)看不見;……;則第10個(gè)圖形中,其中看得見的小立方體個(gè)數(shù)是( 。
A. 270 B. 271 C. 272 D. 273
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com