【題目】如圖,已知直線為常數(shù))經(jīng)過拋物線上的點(diǎn)及拋物線的頂點(diǎn).拋物線與軸交于點(diǎn),與軸的另一個(gè)交點(diǎn)為

1)求的值和點(diǎn)的坐標(biāo);

2)根據(jù)圖象,寫出滿足的取值范圍;

3)求四邊形的面積.

【答案】1,;(2;(34

【解析】

(1)將A的坐標(biāo)帶入拋物線解析式即可得出K的值,同理求出M的值然后利用配方法把一般式配為頂點(diǎn)式,即可得出B的坐標(biāo);

(2)將AB的坐標(biāo)分別帶入即可解答.

(3)先求出點(diǎn)C的坐標(biāo)和點(diǎn)D的坐標(biāo),將四邊形ABCD的面積分為,即可計(jì)算解答.

:(1)將點(diǎn)代入,得,

解得

將點(diǎn)代入,得,

解得

∴拋物線的解析式為

∴點(diǎn)的坐標(biāo)為

2)∵,坐標(biāo)分別為,

∴當(dāng)時(shí),的取值范圍是

3)函數(shù),當(dāng)時(shí),

∴點(diǎn)坐標(biāo)為,

當(dāng)時(shí),,

解方程得,

∴點(diǎn)坐標(biāo)為

四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,BC2,點(diǎn)PABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PBC=∠PCA,則線段AP長(zhǎng)的最小值為( 。

A.0.5B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)若點(diǎn)在拋物線上,點(diǎn)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩邊之比為整數(shù)的三角形稱為倍比三角形.其中,這個(gè)整數(shù)比稱為倍比,第三條邊叫做該三角形的底.

1)如圖1,ABC是以AC為底的倍比三角形,倍比為3,若∠C=90°,AC=2,求BC的長(zhǎng);

2)如圖2,ABC中,DBC邊上一點(diǎn),BD=3,CD=1,連結(jié)AD.若AC=2,求證:ABD是倍比三角形,并求出倍比;

3)如圖3,菱形ABCD中,∠BAD為鈍角,P為對(duì)角線BD上一動(dòng)點(diǎn),過PPHCDH、當(dāng)CP+PH的值最小時(shí),APCD恰好是以PD為底的倍比三角形,記倍比為x,=y,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣實(shí)施新課程改革后,學(xué)習(xí)的自主字習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖下列問題:

1)本次調(diào)查中,張老師一共調(diào)査了  名同學(xué),其中C類女生有  名,D類男生有  名;

2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)為了共同進(jìn)步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角標(biāo)系中,拋物線Cyx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)Dy軸正半軸上一點(diǎn).且滿足ODOC,連接BD,

1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)SPBD最大時(shí),連接AP,以PB為邊向上作正BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為E,將BOE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時(shí)拋物線C′x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內(nèi)找一個(gè)點(diǎn)S,使得以B′R、T、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙三名同學(xué)中隨機(jī)抽取環(huán)保志愿者,求下列事件的概率:

1)抽取1名,恰好是甲;

2)抽取2名,甲在其中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(a﹣1x2+2x+a﹣1=0

1)若該方程有一根為2,求a的值及方程的另一根;

2)當(dāng)a為何值時(shí),方程僅有一個(gè)根?求出此時(shí)a的值及方程的根.

查看答案和解析>>

同步練習(xí)冊(cè)答案