【題目】中,以為斜邊,作直角,使點(diǎn)落在內(nèi),

1)如圖1,若,,,點(diǎn),、分別為,的中點(diǎn),連接,求線段的長(zhǎng);

2)如圖2,若,把繞點(diǎn)遞時(shí)針旋轉(zhuǎn)一定角度,得到,連接并延長(zhǎng)變于點(diǎn),求證:;

3)如圖3,若,過點(diǎn)的直線交于點(diǎn),交于點(diǎn),,且,請(qǐng)直接寫出線段、、之間的關(guān)系(不需要證明).

【答案】1 2)見解析,(3

【解析】

1)在直角三角形中,利用銳角三角函數(shù)求出AB,得到利用三角形中位線的性質(zhì)即可得到答案;

2)先利用互余判斷出,∠BDP=PEC,得到△BDP和△CEQ全等,再用三角形的外角得到∠EPC=PQC,即可得到答案;

3)連接AF,利用線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等,判斷出∠AFB=90°,利用勾股定理即可得到答案.

解:(1)∵∠ADB=90°,∠BAD=30°,

cosBAD

AC=AB=12,

∵點(diǎn)P、M分別為BCAB邊的中點(diǎn),

PM=AC=6,

2)如圖2

ED上截取EQ=PD,

∵∠ADB=90°,

∴∠BDP+ADE=90°

AD=AE,

∴∠ADE=AED

∵把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,得到△ACE

∴∠AEC=ADB=90°

∵∠AED+PEC=90°,

∴∠BDP=PEC

在△BDP和△CEQ中,

,

∴△BDP≌△CEQ

BP=CQ,∠DBP=QCE,

∵∠CPE=BDP+DBP,

PQC=PEC+QCE,

∴∠EPC=PQC,

PC=CQ,

BP=CP

3

理由:如圖3,

連接AF,

EFAC,且AE=EC,

FA=FC,∠FAC=FCA,

EFAC,且AE=EC,

∴∠DAC=DCADA=DC,

AD=BD,

BD=DC,

∴∠DBC=DCB

∵∠FAC=FCA,∠DAC=DCA,

∴∠DAF=DCB,

∴∠DAF=DBC

∴∠AFB=ADB=90°,

RtADB中,DA=DB,

RtABF中,

FA=FC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與雙曲線yk0,x0)交于點(diǎn)A,將直線yx向上平移2個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線交于點(diǎn)B,若OA3BC,則k的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀理解]

我們知道:,那么結(jié)果等于多少呢?

在圖1所示的等邊三角形數(shù)陣中,第行的一個(gè)小等邊三角形中的數(shù)為,即行的三個(gè)小等邊三角形中的數(shù)的和是; ..第行的個(gè)小等邊三角形中的數(shù)的和是個(gè),即,該等邊三角形數(shù)陣中共有小等邊三角形,所有小等邊三角形數(shù)的和為

[規(guī)律探究]

以圖1中的等邊三角形數(shù)陣的右底角頂點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)再把旋轉(zhuǎn)后的圖形按同樣的方法可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)等邊三角形數(shù)陣各行同一位置的小等邊三角形中的數(shù),發(fā)現(xiàn)位于奇數(shù)位置的三個(gè)數(shù)(如第行的第個(gè)小三角形中的數(shù)分別為的和為;發(fā)現(xiàn)位于偶數(shù)位置的三個(gè)數(shù)(如第行的第個(gè)小三角形中的數(shù)分別為的和為;而每個(gè)等邊三角形數(shù)陣中,由于位于奇數(shù)位置的數(shù)比位于偶數(shù)位置的數(shù)多個(gè),則位于偶數(shù)位置的數(shù)有_

個(gè) ,位于奇數(shù)位置的數(shù)有 個(gè), 由此可得,這三個(gè)等邊三角形數(shù)陣所有數(shù)的總和為:

因此,

[解決問題]根據(jù)以上發(fā)現(xiàn),計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù),下列說法正確的個(gè)數(shù)是( 。

①對(duì)于任何滿足條件的,該二次函數(shù)的圖象都經(jīng)過點(diǎn)兩點(diǎn);

②若該函數(shù)圖象的對(duì)稱軸為直線,則必有;

③當(dāng)時(shí),的增大而增大;

④若,是函數(shù)圖象上的兩點(diǎn),如果總成立,則

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,點(diǎn)上,的切線,于點(diǎn),延長(zhǎng)線上一點(diǎn),于點(diǎn),連接,

1)求證:平分

2)若,

①求的度數(shù);

②若的半徑為2,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點(diǎn),連接AG并延長(zhǎng)交BC邊的延長(zhǎng)線于E點(diǎn),對(duì)角線BDAGF點(diǎn).已知FG2,則線段AE的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點(diǎn),ON=6,把△OMN沿MN折疊,點(diǎn)O落在點(diǎn)C處,MCOB交于點(diǎn)P,若MN=MP=5,則PN=(  )

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對(duì)交通法則的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:.非常了解,.比較了解,.基本了解,.不太了解,并將此次調(diào)查結(jié)果整理繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)本次共調(diào)查_______名學(xué)生;扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)扇形的圓心角度數(shù)是_______;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)學(xué)校準(zhǔn)備從甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)10個(gè)班的300名學(xué)生即將參加學(xué)校舉行的研究旅行活動(dòng),學(xué)校提出以下4個(gè)活動(dòng)主題:A.赤水丹霞地貌考察;B.平塘天文知識(shí)考察;C.山關(guān)紅色文化考察;D.海龍電土司文化考察,為了解學(xué)生喜歡的活動(dòng)主題,學(xué)生會(huì)開展了一次調(diào)查研究,請(qǐng)將下面的過程補(bǔ)全

1)收集數(shù)據(jù):學(xué)生會(huì)計(jì)劃調(diào)查學(xué)生喜歡的活動(dòng)主題情況,下面抽樣調(diào)查的對(duì)象選擇合理的是______.(填序號(hào))

①選擇七年級(jí)3班、4班、5班學(xué)生作為調(diào)查對(duì)象

②選擇學(xué)校旅游攝影社團(tuán)的學(xué)生作為調(diào)查對(duì)象

③選擇各班學(xué)號(hào)為6的倍數(shù)的學(xué)生作為調(diào)查對(duì)象

2)整理、描述數(shù)據(jù):通過調(diào)査后,學(xué)生會(huì)同學(xué)繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)把統(tǒng)計(jì)圖補(bǔ)充完整

某校七年級(jí)學(xué)生喜歡的活動(dòng)主題條形統(tǒng)計(jì)圖某校七年級(jí)學(xué)生喜歡的活動(dòng)主題扇形統(tǒng)計(jì)圖

3)分析數(shù)據(jù)、推斷結(jié)論:請(qǐng)你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次活動(dòng)的主題,你的推薦是______(填A-D的字母代號(hào)),估算全年級(jí)大約有多少名學(xué)生喜歡這個(gè)主題活動(dòng)

4)若在5名學(xué)生會(huì)干部(32女)中,隨機(jī)選取2名同學(xué)擔(dān)任活動(dòng)的組長(zhǎng)和副組長(zhǎng),求抽出的兩名同學(xué)恰好是11女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案