【題目】已知甲沿周長為300米的環(huán)形跑道上按逆時針方向跑步,速度為米/秒,與此同時在甲后面100米的乙也沿該環(huán)形跑道按逆時針方向跑步,速度為3米/秒.設(shè)運(yùn)動時間為秒.
(1)若=5,求甲、乙兩人第1次相遇的時間;
(2)當(dāng)時,甲、乙兩人第1次相遇.
①求的值;
②若時,甲、乙兩人第1次相遇前,當(dāng)兩人相距120米時,求的值.
【答案】(1)t=100(2)① a=1或7 ②t=5或20
【解析】(1)根據(jù)相遇時,甲和乙的路程差等于200米列方程即可求解;
(2)①由第1次相遇時間為50秒,分兩種情況:當(dāng)時乙和甲的路程差等于100米;當(dāng)時甲和乙的路程差等于200米列方程即可求出a值;
②當(dāng)時由①可知a=7,分兩種情況討論:一種是乙距甲120米,即在100米的基礎(chǔ)上甲又比乙多跑20米,此時兩人在第一次相遇前相距120米,另一種是甲距乙120米,即在200米的基礎(chǔ)上甲又比乙多跑80米,此時兩人在第一次相遇前相距120米,即可得出t值.
解:(1)由題可列方程,
解得: ,
答:若=5,甲、乙兩人第1次相遇的時間為100秒.
(2)①有兩種情況:
當(dāng)時,則,解得,
當(dāng)時,則,解得,
所以a=1或7;
②當(dāng)時由①可知a=7,根據(jù)題意可列方程:
,或
解得,t=5或20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保健康的“共享單車”已成為人們短途出行的一種新方式,一輛新投放市場的單車其先期成本為1050元. 如圖是一輛新投放的共享單車其運(yùn)營收入和運(yùn)營支出關(guān)于時間的函數(shù)圖象。
注:一輛單車的盈利=運(yùn)營收入-運(yùn)營支出-先期成本
(1)分別求及運(yùn)營60天后關(guān)于時間的函數(shù)關(guān)系式.
(2)求一輛新投放市場的單車恰好收回先期成本需要運(yùn)營多少天?
(3)某公司投放市場一批單車,其先期成本不少于2.1萬元但不超過10.5萬元,經(jīng)過一段時間的市場試運(yùn)營共盈利3550元,則該公司試運(yùn)營的天數(shù)為 天(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)B,PD交⊙O于點(diǎn)C,D,PE是⊙O的切線,E為切點(diǎn),連接AE,交CD于點(diǎn)F.
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點(diǎn)A關(guān)于原點(diǎn)O對稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°,畫出圖形,寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo);
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分組合作學(xué)習(xí)”已成為推動課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計圖如下:
請結(jié)合圖中信息解答下列問題:
(1)求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計圖;
(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對應(yīng)扇形的圓心角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.
(1)求證:△ABD≌△EBD;
(2)過點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將多項(xiàng)式x3﹣5xy2﹣7y3+8x2y按某一個字母的升冪排列,正確的是( )
A.x3﹣7y3﹣5xy2+8x2y
B.﹣7y3﹣5xy2+8x2y+x3
C.7y3﹣5xy2+8x2y+x3
D.x3﹣5xy2+8x2y﹣7y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的部分對應(yīng)值如下表
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 |
y | ﹣12 | ﹣5 | 0 | 3 | 4 | 3 |
利用二次函數(shù)的圖象可知,當(dāng)函數(shù)值y>0時,x的取值范圍是( 。
A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com