【題目】定義:三角形一個內(nèi)角的平分線和與另一個內(nèi)角相鄰的外角平分線相交所成的銳角稱為該三角形第三個內(nèi)角的遙望角.
(1)如圖1,∠E是△ABC中∠A的遙望角,若∠A=α,請用含α的代數(shù)式表示∠E.
(2)如圖2,四邊形ABCD內(nèi)接于⊙O,=,四邊形ABCD的外角平分線DF交⊙O于點F,連結BF并延長交CD的延長線于點E.求證:∠BEC是△ABC中∠BAC的遙望角.
(3)如圖3,在(2)的條件下,連結AE,AF,若AC是⊙O的直徑.
①求∠AED的度數(shù);
②若AB=8,CD=5,求△DEF的面積.
【答案】(1)∠E=α;(2)見解析;(3)①∠AED=45°;②
【解析】
(1)由角平分線的定義可得出結論;
(2)由圓內(nèi)接四邊形的性質(zhì)得出∠FDC+∠FBC=180°,得出∠FDE=∠FBC,證得∠ABF=∠FBC,證出∠ACD=∠DCT,則CE是△ABC的外角平分線,可得出結論;
(3)①連接CF,由條件得出∠BFC=∠BAC,則∠BFC=2∠BEC,得出∠BEC=∠FAD,證明△FDE≌△FDA(AAS),由全等三角形的性質(zhì)得出DE=DA,則∠AED=∠DAE,得出∠ADC=90°,則可求出答案;
②過點A作AG⊥BE于點G,過點F作FM⊥CE于點M,證得△EGA∽△ADC,得出,求出,設AD=4x,AC=5x,則有(4x)2+52=(5x)2,解得x=,求出ED,CE的長,求出DM,由等腰直角三角形的性質(zhì)求出FM,根據(jù)三角形的面積公式可得出答案.
解:(1)∵BE平分∠ABC,CE平分∠ACD,
∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,
(2)如圖1,延長BC到點T,
∵四邊形FBCD內(nèi)接于⊙O,
∴∠FDC+∠FBC=180°,
又∵∠FDE+∠FDC=180°,
∴∠FDE=∠FBC,
∵DF平分∠ADE,
∴∠ADF=∠FDE,
∵∠ADF=∠ABF,
∴∠ABF=∠FBC,
∴BE是∠ABC的平分線,
∵,
∴∠ACD=∠BFD,
∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,
∴∠DCT=∠BFD,
∴∠ACD=∠DCT,
∴CE是△ABC的外角平分線,
∴∠BEC是△ABC中∠BAC的遙望角.
(3)①如圖2,連接CF,
∵∠BEC是△ABC中∠BAC的遙望角,
∴∠BAC=2∠BEC,
∵∠BFC=∠BAC,
∴∠BFC=2∠BEC,
∵∠BFC=∠BEC+∠FCE,
∴∠BEC=∠FCE,
∵∠FCE=∠FAD,
∴∠BEC=∠FAD,
又∵∠FDE=∠FDA,FD=FD,
∴△FDE≌△FDA(AAS),
∴DE=DA,
∴∠AED=∠DAE,
∵AC是⊙O的直徑,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,
∴∠AED=∠DAE=45°,
②如圖3,過點A作AG⊥BE于點G,過點F作FM⊥CE于點M,
∵AC是⊙O的直徑,
∴∠ABC=90°,
∵BE平分∠ABC,
∴∠FAC=∠EBC=∠ABC=45°,
∵∠AED=45°,
∴∠AED=∠FAC,
∵∠FED=∠FAD,
∴∠AED﹣∠FED=∠FAC﹣∠FAD,
∴∠AEG=∠CAD,
∵∠EGA=∠ADC=90°,
∴△EGA∽△ADC,
∴,
∵在Rt△ABG中,AG=,
在Rt△ADE中,AE=AD,
∴,
在Rt△ADC中,AD2+DC2=AC2,
∴設AD=4x,AC=5x,則有(4x)2+52=(5x)2,
∴x=,
∴ED=AD=,
∴CE=CD+DE=,
∵∠BEC=∠FCE,
∴FC=FE,
∵FM⊥CE,
∴EM=CE=,
∴DM=DE﹣EM=,
∵∠FDM=45°,
∴FM=DM=,
∴S△DEF=DEFM=.
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:連結凸四邊形一組對邊中點的線段叫做四邊形的“準中位線”.
(1)概念理解:
如圖1,四邊形中,為的中點,,是邊上一點,滿足,試判斷是否為四邊形的準中位線,并說明理由.
(2)問題探究:
如圖2,中,,,,動點以每秒1個單位的速度,從點出發(fā)向點運動,動點以每秒6個單位的速度,從點出發(fā)沿射線運動,當點運動至點時,兩點同時停止運動.為線段上任意一點,連接并延長,射線與點構成的四邊形的兩邊分別相交于點,設運動時間為.問為何值時,為點構成的四邊形的準中位線.
(3)應用拓展:
如圖3,為四邊形的準中位線,,延長分別與,的延長線交于點,請找出圖中與相等的角并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圖2,△ABC是等邊三角形,D、E分別是AB、BC邊上的兩個動點(與點A、B、C不重合),始終保持BD=CE.
(1)當點D、E運動到如圖1所示的位置時,求證:CD=AE.
(2)把圖1中的△ACE繞著A點順時針旋轉(zhuǎn)60°到△ABF的位置(如圖2),分別連結DF、EF.
①找出圖中所有的等邊三角形(△ABC除外),并對其中一個給予證明;
②試判斷四邊形CDFE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一種三角車位鎖,其主體部分是由兩條長度相等的鋼條組成.當位于頂端的小掛鎖打開時,鋼條可放入底盒中(底盒固定在地面下),此時汽車可以進入車位;當車位鎖上鎖后,鋼條按圖1的方式立在地面上,以阻止底盤高度低于車位鎖高度的汽車進入車位.圖2是其示意圖,經(jīng)測量,鋼條AB=AC=50cm,∠ABC=47°.
(1)求車位鎖的底盒長BC.
(2)若一輛汽車的底盤高度為30cm,當車位鎖上鎖時,問這輛汽車能否進入該車位?(參考數(shù)據(jù):sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學習用品,于是立即下樓騎自行車,沿小玲行進的路線,勻速去追小玲,媽媽追上小玲將學習用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關系如圖所示(小玲和媽媽上、下樓以及媽媽交學習用品給小玲耽擱的時間忽略不計).當媽媽剛回到家時,小玲離學校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)請用尺規(guī)作圖法作底角∠ABC的平分線BD,交AC于點D(保留作圖痕跡,不要求寫作法);
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x+3與x軸的一個交點為點A,與y軸的交點為點B,拋物線的對稱軸l與x軸交于點,與線段AB交于點E,點D是對稱軸l上一動點.
(1)點A的坐標是 ,點B的坐標是 ;
(2)是否存在點D,使得△BDE和△ACE相似?若存在,請求出點D的坐標,若不存在,請說明理由;
(3)如圖2,拋物線的對稱軸l向右平移與線段AB交于點F,與拋物線交于點G,當四邊形DEFG是平行四邊形且周長最大時,求出點G的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)(其中)的圖像與軸交于、兩點,與軸交于點.
(1)點的坐標為 , ;
(2)若為的外心,且與的面積之比為,求的值;
(3)在(2)的條件下,試探究拋物線上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com