【題目】如圖,直線l和雙曲線 (k>0)交于A,B兩點(diǎn),P是線段AB上的點(diǎn)(不與A,B重合),過點(diǎn)A,B,P分別向x軸作垂線,垂足分別是C,D,E,連接OA,OB,OP,設(shè)△AOC面積是S1 , △BOD面積是S2 , △POE面積是S3 , 則(
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3

【答案】D
【解析】解:如下圖,
∵點(diǎn)A在y= 上,
∴SAOC= k,
∵點(diǎn)P在雙曲線的上方,
∴SPOE k,
∵點(diǎn)B在y= 上,
∴SBOD= k,
∴S1=S2<S3
故選;D.
【考點(diǎn)精析】利用比例系數(shù)k的幾何意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著。書中有下列問題“今有勾八步,股十五步。問勾中容圓徑幾何?”其意思為今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是步。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省泰安市)某學(xué)校將為初一學(xué)生開設(shè)ABCDEF6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。

A. 這次被調(diào)查的學(xué)生人數(shù)為400

B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°

C. 被調(diào)查的學(xué)生中喜歡選修課E、F的人數(shù)分別為80,70

D. 喜歡選修課C的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE繞著點(diǎn)A旋轉(zhuǎn),∠DAE=90°,AD=AE=6,連接BD、CD、CE,點(diǎn)M、P、N分別為DE、DC、BC的中點(diǎn),連接MP、PN、MN,則△PMN的面積最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點(diǎn),NP平分∠MNQ.
(1)求證:NQ⊥PQ;
(2)若⊙O的半徑R=2,NP= ,求NQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB的解析式為y=x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),作PEy軸于點(diǎn)E,PFx軸于點(diǎn)F,連接EF,則線段EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品每件的成本為10元,在試銷階段每件產(chǎn)品的日銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:

X(元)

15

20

25

Y(件)

25

20

15

(1)觀察與猜想y與x的函數(shù)關(guān)系,并說明理由.

(2)求日銷售價(jià)定為30元時(shí)每日的銷售利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一箱蘋果分給若干位小朋友,若每位小朋友分5個(gè)蘋果,則還剩12個(gè)蘋果,若每位小朋友分8個(gè)蘋果,則有一位小朋友分到了蘋果但不足8個(gè),則有小朋友________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)E、B、D、F在同一直線上,且BE=DF.求證:AE=CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案