【題目】如圖,在△ABC中,

(1)在圖中作出△ABC的內(nèi)角平分線AD.(要求:尺規(guī)作圖,保留作圖痕跡,不寫證明過(guò)程)

(2)若∠BAC = 2∠C,在已作出的圖形中,△ ∽△

(3)畫出△ABC的高AE(使用三角板畫出即可),若∠B=α,∠C=β,那么∠DAE= (請(qǐng)用含α、β的代數(shù)式表示)

【答案】(1)作圖見解析;

(2)ABC,DBA;

(3)畫高見解析,

【解析】試題分析:(1)考查了尺規(guī)作圖能力;

(2)在△ABD與△CBA中,易證∠BAD=∠BCA,又∠B公共,根據(jù)兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似,得出△BAD∽△BCA.

(3)使用三角板畫出即可.

試題解析:(1)如圖,

A為圓心,任意長(zhǎng)為半徑化弧,分別交AB,ACE,F(xiàn),

然后分別以E,F(xiàn)為圓心,大于EF的長(zhǎng)為半徑畫弧,兩弧交于P,

作射線AP,

AD即為所求.

(2)△ABD∽△CBA理由如下:

AD平分∠BAC,∠BAC=2∠C,

∴∠BAD=∠BCA

又∵∠B=∠B

∴△ABD∽△CBA

3畫圖如下:

DAE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在下列四組條件中,能判定AB∥CD的是(
A.∠1=∠2
B.∠ABD=∠BDC
C.∠3=∠4
D.∠BAD+∠ABC=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖a是長(zhǎng)方形紙帶,∠DEF=25°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x1,x2是方程x2+5x30的兩個(gè)根,則x+x2x1x2的值是( 。

A. 8B. 8C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在方格紙中,ABC的三個(gè)頂點(diǎn)及DE,FG,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.

(1)現(xiàn)以D,E,F,G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫三角形,在所畫的三角形中與ABC不全等但面積相等的三角形是 (只需要填一個(gè)三角形);

(2)先從D,E兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再?gòu)?/span>F,GH三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取的這三個(gè)點(diǎn)為頂點(diǎn)畫三角形,畫樹狀圖求所畫三角形與ABC面積相等的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點(diǎn)P⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接G20杭州峰會(huì)的召開,某校八年級(jí)(1)(2)班準(zhǔn)備集體購(gòu)買一種T恤衫參加一項(xiàng)社會(huì)活動(dòng).了解到某商店正好有這種T恤衫的促銷,當(dāng)購(gòu)買10件時(shí)每件140元,購(gòu)買數(shù)量每增加1件單價(jià)減少1元;當(dāng)購(gòu)買數(shù)量為60件(含60件)以上時(shí),一律每件80元.
(1)如果購(gòu)買 件(10< <60),每件的單價(jià)為 元,請(qǐng)寫出 關(guān)于 的函數(shù)關(guān)系式;
(2)如果八(1)(2)班共購(gòu)買了100件T恤衫,由于某種原因需分兩批購(gòu)買,且第一批購(gòu)買量多于30件且少于60件.已知購(gòu)買兩批T恤衫一共花了9200元,求第一批T恤衫的購(gòu)買數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)寫出一個(gè)含有兩個(gè)字母、系數(shù)為﹣2的二次單項(xiàng)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD,僅從下列條件中任取兩個(gè)加以組合,使得ABCD是平行四邊形,一共有多少種不同的組合? ABCD BCAD AB=CD BC=AD( )

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案