【題目】如圖,已知AB//CD,分別探究下列三個圖形中∠APC和∠PAB,∠PCD的關系.
結(jié)論:(1)__________________________
(2)__________________________
(3)__________________________
【答案】(1)∠A+∠P+∠C=360°;(2)∠APC=∠A+∠C;(3)∠C=∠A+∠P
【解析】
(1)過點P作PE∥AB,則AB∥PE∥CD,再根據(jù)兩直線平行同旁內(nèi)角互補即可解答;
(2)過點P作PF∥AB,則AB∥CD∥PF,再根據(jù)兩直線內(nèi)錯角相等即可解答;
(3)根據(jù)AB∥CD,可得出∠PEB=∠PCD,再根據(jù)三角形外角的性質(zhì)進行解答;
解:(1)過點P作PE∥AB,則AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°.
故填:∠A+∠APC+∠C=360°;
(2)過點P作直線PF∥AB,
∵AB∥CD,
∴AB∥PF∥CD,
∴∠PAB=∠1,∠PCD=∠2,
∴∠APC=∠PAB+∠PCD.
故填:∠APC=∠A+∠C;
(3)∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠P,
∴∠C=∠A+∠P.
故填:∠C=∠A+∠P.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以O為圓心的圓與直線y=﹣x+ 交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為( )
A. π
B.π
C. π
D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由;
(2)AD與BC的位置關系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線、之間有一個直角三角形,其中,.
(1)如圖,點在直線上,、在直線上,若,.試說明:;
(2)將三角形如圖放置,直線,點、分別在直線、上,且平分.求的度數(shù);(用的代數(shù)式表示)
(3)在(2)的前提下,直線平分交直線于,如圖.在取不同數(shù)值時,的大小是否發(fā)生變化?若不變求其值,若變化請求出變化的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,,點為內(nèi)一點,連接,,,過點作,交的延長線于點.
(1)如圖1,求證:;
(2)如圖2,點為的中點,分別連接,,求的度數(shù);
(3)如圖3,在(2)的條件下,點為上一點,連接,點為的中點,連接,過點作,交的延長線于點,若,的面積為30,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖③,點BC在∠MAN的邊AM、AN上,點EF在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .(12分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠DAE=67.5°,EF⊥AB,垂足為F,則EF的長為( )
A. 1B. C. 4-2D. 3-4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形AOBC的頂點C的坐標是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為每秒1個單位,設運動時間為t秒,過點P作PE⊥AO交AB于點E.
(1)求直線AB的解析式;
(2)在動點P、Q運動的過程中,以B、Q、E為頂點的三角形是直角三角形,直按寫出t的值;
(3)設△PEQ的面積為S,求S與時間t的函數(shù)關系,并指出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:若,求m,n的值.
解:,
.
,
,,
,,
,.
根據(jù)你的觀察,探究下面的問題:
(1)已知:,求的值;
(2)已知:的三邊長a,b,c都是正整數(shù),且滿足:,求的最大邊c的值;
(3)已知:,,直接寫出a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com