【題目】快車和慢車分別從A市和B市兩地同時(shí)出發(fā),勻速行駛,先相向而行,慢車到達(dá)A市后停止行駛,快車到達(dá)B市后,立即按原路原速度返回A市(調(diào)頭時(shí)間忽略不計(jì)),結(jié)果與慢車同時(shí)到達(dá)A市.快、慢兩車距B市的路程y1、y2(單位:km)與出發(fā)時(shí)間x(單位:h)之間的函數(shù)圖像如圖所示.
(1)A市和B市之間的路程是 km;
(2)求a的值,并解釋圖中點(diǎn)M的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(3)快車與慢車迎面相遇以后,再經(jīng)過多長時(shí)間兩車相距20 km?
【答案】(1)360.(2)a=120,點(diǎn)M的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義是兩車出發(fā)2小時(shí)時(shí),在距B市120 km處相遇.(3)快車與慢車迎面相遇以后,再經(jīng)過或h兩車相距20 km.
【解析】
(1)由函數(shù)圖象的數(shù)據(jù)意義直接可以得出A、B兩地之間的距離;
(2)根據(jù)題意得快車速度是慢車速度的2倍,觀察圖象知2小時(shí)快車與慢車迎面相遇,列出方程可求得答案;
(3)利用待定系數(shù)法分別求出AB、BC、OC的解析式,根據(jù)題意列出方程求解即可.
(1)由題意得:A市和B市之間的路程是360 km;
(2)根據(jù)題意得快車速度是慢車速度的2倍,設(shè)慢車速度為x km/h,則快車速度為2x km/h.
根據(jù)題意,得 2(x+2x)=360,解得x=60.
2×60=120,所以a=120.
點(diǎn)M的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義是兩車出發(fā)2小時(shí)時(shí),在距B市120km處相遇.
(3)快車速度為120 km/h,到B市后又回到A市的時(shí)間為(h).
慢車速度為60 km/h,到達(dá)A市的時(shí)間為360÷60=6(h).
如圖:
當(dāng)0≤x≤3時(shí),
設(shè)AB的解析式為:
由圖象得:,;,;代入得:
解得:
∴AB的解析式為:y=-120x+360(0x≤3).
當(dāng)3<x≤6時(shí),
設(shè)BC的解析式為:
由圖象得:,;,;代入得:
解得:
∴函數(shù)的解析式為:y1=120x-360(3<x≤6) .
設(shè)OC的解析式為:
由圖象得:,;代入得:
解得:
∴OC的解析式為:y2=60x(0x≤6).
當(dāng)0≤x≤3時(shí),
根據(jù)題意,得y2-y=20,即60x-(-120x+360)=20,
解得x=,.
當(dāng)3<x≤6時(shí),
根據(jù)題意,得y2-y1=20,即60x-(120x-360)=20,
解得x=,-2=.
所以,快車與慢車迎面相遇以后,再經(jīng)過或h兩車相距20km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,.
求的取值范圍.
是否存在實(shí)數(shù),使方程的兩實(shí)數(shù)根互為相反數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)40°后所得的圖形,點(diǎn)C恰好在AB上,∠AOD=90°,則∠D的度數(shù)是__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)當(dāng)時(shí),求該拋物線與坐標(biāo)軸的交點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),求的最大值;
(3)若直線與二次函數(shù)的圖象交于、兩點(diǎn),問線段的長度是否是定值?如果是,求出其長度;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)因式分解:(x2+4)2﹣16x2
(2)先化簡,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷(2x),其中x=﹣2,y=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.
(1)求BC邊的長;
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)M是CD的中點(diǎn),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿BC運(yùn)動(dòng),到點(diǎn)C時(shí)停止運(yùn)動(dòng),速度為每秒1個(gè)長度單位;動(dòng)點(diǎn)F從點(diǎn)M出發(fā),沿M→D→A遠(yuǎn)動(dòng),速度也為每秒1個(gè)長度單位:動(dòng)點(diǎn)G從點(diǎn)D出發(fā),沿DA運(yùn)動(dòng),速度為每秒2個(gè)長度單位,到點(diǎn)A后沿AD返回,返回時(shí)速度為每秒1個(gè)長度單位,三個(gè)點(diǎn)的運(yùn)動(dòng)同時(shí)開始,同時(shí)結(jié)束.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關(guān)系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).
(1)求一次函數(shù)和二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com