【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)求證:∠B=∠DEF;
(3)當∠A=40°時,求∠DEF的度數(shù).
【答案】
(1)證明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中, ,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形
(2)證明:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B
(3)證明:∵由(2)知△BDE≌△CEF,
∴∠BDE=∠CEF,
∴∠CEF+∠DEF=∠BDE+∠B,
∴∠DEF=∠B,
∴AB=AC,∠A=40°,
∴∠DEF=∠B= =70°
【解析】(1)首先根據(jù)條件證明△DBE≌△ECF,根據(jù)全等三角形的性質可得DE=FE,進而可得到△DEF是等腰三角形;(2)根據(jù)△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B即可得出結論;(3)由(2)知∠DEF=∠B,再根據(jù)等腰三角形的性質即可得出∠DEF的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“垂直于同一條直線的兩直線平行”,運用這一性質可以說明鋪設鐵軌互相平行的道理.如圖所示,已知∠2是直角,再度量出∠1或∠3就會知道鐵軌平行不平行?[解答]
方案一:若量得∠3=90°,結合∠2情況,說明理由.
方案二:若量得∠1=90°,結合∠2情況,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,不一定成立的是( )
A.圓既是中心對稱圖形又是軸對稱圖形
B.弦的垂線經過圓心且平分這條弦所對的弧
C.弧的中點與圓心的連線垂直平分這條弧所對的弦
D.垂直平分弦的直線必過圓心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)隨機抽查了一部分市民進行法律知識測試,測試成績(得分取整數(shù),每組數(shù)據(jù)含最小值不含最大值)整理后,得到如圖所示的頻數(shù)分布直方圖,寫出一條你從圖中所獲得的信息: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是初二年級50名同齡女生身高數(shù)據(jù):
身高/cm | 146 | 151 | 153 | 154 | 156 | 157 | 158 | 159 | 160 |
人數(shù) | 1 | 2 | 2 | 2 | 3 | 4 | 8 | 4 | 4 |
身高/cm | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 169 | |
人數(shù) | 2 | 4 | 3 | 2 | 3 | 4 | 1 | 1 |
(1)根據(jù)下表的分組方法進行數(shù)據(jù)整理,補全頻數(shù)分布表:
(2)根據(jù)分布表畫出頻數(shù)分布直方圖.
(3)觀察頻數(shù)分布表和頻數(shù)分布直方圖回答問題:為了參加廣播操比賽,老師打算從以上50名女生中挑選30名隊員。為了讓參賽隊員的身高比較整齊,老師應該選擇身高在什么范圍內的同學呢?請寫出答案并簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,將直線l1:y=﹣2x﹣1平移后,得到直線l2:y=﹣2x+5,則下列平移作法正確的是( 。
A.將l1向右平移3個單位B.將l1向右平移6個單位
C.將l1向左平移3個單位D.將l1向左平移6個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com