【題目】已知:如圖,在平面直角坐標系,直線AB與x軸交于點A(-2,0),與反比例函數(shù)在第一象限內的圖象的交于點B(2,n),連接BO,若=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)設直線AB交y軸于點C,點C是否為線段AB的中點?請說明理由.
【答案】(1),;(2)點是線段的中點,理由見解析.
【解析】
(1)先由A(-2,0),得OA=2,點B(2,n),S△AOB=4,得OAn=4,n=4,則點B的坐標是(2,4),把點B(2,4)代入反比例函數(shù)的解析式為,可得反比例函數(shù)的解析式為:;再把A(-2,0)、B(2,4)代入直線AB的解析式為y=kx+b可得直線AB的解析式為y=x+2.
(2)由(1)中求得的AB的直線解析式求出C點的坐標,再結合A,B的坐標,判斷C是否為線段AB的中點.
解:(1)由,得 .∵點在第一象限內,.
∴.∴.∴點的坐標是.
設該反比例函數(shù)的解析式為.將點的坐標代入,得 ,
∴.∴反比例函數(shù)的解析式為.
設直線的解析式為.將點,的坐標分別代入,得
解得 ∴直線的解析式為.
(2)點是線段的中點,理由:
∵直線的解析式為,當x=0時,y=2,
∴C(0,2).
∵,B,
∴=0,=2.
∴C為線段AB的中點.
科目:初中數(shù)學 來源: 題型:
【題目】某社會團體準備購進甲、乙兩種防護服捐給一線抗疫人員,經了解,購進5件甲種防護服和4件乙種防護服需要2萬元,購進10件甲種防護服和3件乙種防護服需要3萬元.
(1)甲種防護服和乙種防護服每件各多少元?
(2)實際購買時,發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購買甲種防護服超過20件時,超過的部分按原價的8折付款,乙種防護服沒有優(yōu)惠;方案二:兩種防護服都按原價的9折付款,該社會團體決定購買件甲種防護服和30件乙種防護服.
①求兩種方案的費用與件數(shù)的函數(shù)解析式;
②請你幫該社會團體決定選擇哪種方案更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016寧夏)某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內需要更換筆芯個數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計圖:
設x表示水彩筆在使用期內需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若n=9,求y與x的函數(shù)關系式;
(2)若要使這30支水彩筆“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯所需費用的平均數(shù),以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應購買9個還是10個筆芯.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點D,且∠CBE=2∠C.
(1)求證:BE與⊙O相切;
(2)若DF=9,tanC=,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標;
(3)設點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,過以P為頂角頂點、PO為腰的等腰三角形的另一頂點C作x軸的垂線交直線AM于點D,連結PD,設△PCD的面積為S,求S與x之間的函數(shù)關系式;
(4)在上述動點P(x,y)中,是否存在使=2的點?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中,是的中點,點在上(點不與重合),過點的直線交于,交射線于點,設,.
(1)如圖1,若為等邊三角形,點與重合,,求證:;
(2)如圖2,若點與重合,求證:;
(3)如圖3,若,,,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩家草莓采摘園,草莓的銷售價格相間,在生長旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時,按原價銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園需購買元門票.采摘的草莓直接按降價出售.已知在甲園、乙園采摘草莓時,所需費用相同.
在乙采摘園所需費用( 元)與草梅采摘量(千克)滿足一次函數(shù)關系,如下表:
數(shù)量/千克 | ··· | ||||
費用元 | ··· |
(1)求與的函數(shù)關系式(不必寫出的范圍);
(2)求兩個采摘園的草莓在生長旺季前的銷售價格.并求在甲采摘園所需費用(元)與草莓采摘量(千克)的函數(shù)關系式;
(3)若嘉琪準備花費元去采摘草莓,去哪個園采摘,可以得到更多數(shù)量的草莓? 說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com