【題目】如圖,直線,點在直線上,以點為圓心,適當長度為半徑畫弧,分別交直線,兩點,以點為圓心,長為半徑畫弧,與前弧交于點(不與點重合),連接,,,,其中于點.若,則下列結(jié)論錯誤的是(

A.B.C.D.

【答案】C

【解析】

根據(jù)平行線的性質(zhì)得出∠CAB=40°,進而利用圓的概念判斷即可.

解:∵直線l1l2
∴∠ECA=CAB=40°,
∵以點A為圓心,適當長度為半徑畫弧,分別交直線l1,l2B,C兩點,
BA=AC=AD,

,A正確;

∵以點C為圓心,CB長為半徑畫弧,與前弧交于點D(不與點B重合),
CB=CD,
∴∠CAB=DAC=40°,
∴∠BAD=40°+40°=80°,故B正確;
∵∠ECA=40°,∠DAC=40°,
CE=AE,故D正確;
故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,l是經(jīng)過A2,0),B0,b)兩點的直線,且b0,點C的坐標為(2,0),當點B移動時,過點CCDl交于點D

1)求點DO之間的距離;

2)當tanCDO=時,求直線l的解析式;

3)在(2)的條件下,直接寫出△ACD與△AOB重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面上存在點P、點M與線段AB.若線段AB上存在一點Q,使得點M在以PQ為直徑的圓上,則稱點M為點P與線段AB的共圓點.

已知點P0,1),點A(﹣2,﹣1),點B2,﹣1).

1)在點O0,0),C(﹣2,1),D3,0)中,可以成為點P與線段AB的共圓點的是   

2)點Kx軸上一點,若點K為點P與線段AB的共圓點,請求出點K橫坐標xK的取值范圍;

3)已知點Mm,﹣1),若直線yx+3上存在點P與線段AM的共圓點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是以點O為圓心,AB為直徑的半圓上的動點(不與點A,B重合),AB6cm,過點CCDAB于點DECD的中點,連接AE并延長交于點F,連接FD.小騰根據(jù)學習函數(shù)的經(jīng)驗,對線段ACCD,FD的長度之間的關(guān)系進行了探究.

下面是小騰的探究過程,請補充完整:

1)對于點C上的不同位置,畫圖、測量,得到了線段AC,CD,FD的長度的幾組值,如表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

位置8

AC/cm

0.1

0.5

1.0

1.9

2.6

3.2

4.2

4.9

CD/cm

0.1

0.5

1.0

1.8

2.2

2.5

2.3

1.0

FD/cm

0.2

1.0

1.8

2.8

3.0

2.7

1.8

0.5

AC,CD,FD的長度這三個量中,確定   的長度是自變量,   的長度和   的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解答問題:當CDDF時,AC的長度的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì)并解決問題.

小明根據(jù)學習函數(shù)的經(jīng)驗,對問題進行了探究.

下面是小明的探究過程,請補充完整:

1)函數(shù)的自變量的取值范圍是

2)取幾組的對應值,填寫在下表中.

td style="width:6%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">

1.5

0

1

1.2

1.25

2.75

2.8

3

4

5

6

8

1

2

3

6

7.5

8

8

7.5

6

3

1.5

1

的值為_____________;

3)如下圖,在平面直角坐標系中,描出補全后的表中各組對應值所對應的點,并畫出該函數(shù)的圖象;

4)獲得性質(zhì),解決問題:

①通過觀察、分析、證明,可知函數(shù)的圖象是軸對稱圖形,它的對稱軸是____________;

②過點作直線軸,與函數(shù)的圖象交于點(在點的左側(cè)),則的值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,為射線上一動點,將沿折疊,得到恰好落在射線上,則的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)方法選擇

如圖①,四邊形的內(nèi)接四邊形,連接,.求證:.

小穎認為可用截長法證明:在上截取,連接

小軍認為可用補短法證明:延長至點,使得

請你選擇一種方法證明.

(2)類比探究

(探究1

如圖②,四邊形的內(nèi)接四邊形,連接,,的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(探究2

如圖③,四邊形的內(nèi)接四邊形,連接.若的直徑,,則線段,,之間的等量關(guān)系式是______

(3)拓展猜想

如圖④,四邊形的內(nèi)接四邊形,連接.若的直徑,,則線段,,之間的等量關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[提出問題]正多邊形內(nèi)任意一點到各邊距離之和與這個正多邊形的邊及內(nèi)角有什么關(guān)系?

[探索發(fā)現(xiàn)]

為了解決這個問題,我們不妨從最簡單的正多邊形-------正三角形入手

如圖①,是正三角形,邊長是內(nèi)任意一點,各邊距離分別為,確定的值與的邊及內(nèi)角的關(guān)系.

如圖②,五邊形是正五邊形,邊長是是正五邊形內(nèi)任意一點,到五邊形各邊距離分別為 參照的探索過程,確定的值與正五邊形的邊及內(nèi)角的關(guān)系.

類比上述探索過程:

正六邊形(邊長為)內(nèi)任意一點 到各邊距離之和

正八邊形(邊長為)內(nèi)任意一點到各邊距離之和

[問題解決]邊形(邊長為)內(nèi)任意-一點P到各邊距離之和

查看答案和解析>>

同步練習冊答案