【題目】已知一次函數(shù) 的圖象與 、 軸分別交于點 、 ,直線 經(jīng)過 上的三分之一點 ,且交 軸的負半軸于點 ,如果 ,求直線 的解析式.
【答案】(1) 點的坐標(biāo)為 或 (2) 或 .
【解析】試題分析: 根據(jù)y=與y軸,x軸的交點分別為A,B,得出A,B兩點的坐標(biāo),再根據(jù)D為OA上的三分之一點,得出D點的坐標(biāo),進而得出C點的坐標(biāo),即可求出解析式.
試題解析:因為直線y=與y軸,x軸的交點分別為A,B,所以兩點坐標(biāo)分別為A(0,3),B(2,0),所以OA=3,OB=2,所以S△AOB=OAOB=3,
因為D為OA上的三分之一點,所以D點的坐標(biāo)為(0,1)或(0,2),
因為S△AOB=S△DOC=OCOD=3,所以當(dāng)OD=1時,OC=6,當(dāng)OD=2時,OC=3,
因為點C在x軸的負半軸上,所以C點的坐標(biāo)為(-6,0)或(-3,0),
所以直線CD的解析式為y=或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a,b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達式;
(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點坐標(biāo),把B、C兩點坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過點F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點A(0,﹣6),點B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點C與點A重合.Rt△CDE沿y軸正方向平行移動,當(dāng)點C運動到點O時停止運動.解答下列問題:
(1)如圖(2),當(dāng)Rt△CDE運動到點D與點O重合時,設(shè)CE交AB于點M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運動過程中,當(dāng)CE經(jīng)過點B時,求BC的長.
(3)在Rt△CDE的運動過程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的邊上的中線.
(1)①用尺規(guī)完成作圖:延長到點,使,連接;
② 若,求的取值范圍;
(2)如圖2,當(dāng)時,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃在總費用元的限額內(nèi),租用汽車送名學(xué)生和名教師集體參加校外實踐活動,為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
(1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?
(2)請你給學(xué)校選擇一種最節(jié)省費用的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供至位游客乘坐游湖,因景區(qū)加大宣傳,預(yù)計今年游客將會增加.水上樂園的工作人員在去年月日一天出租的艘次人自劃船中隨機抽取了艘,對其中抽取的每艘船的乘坐人數(shù)進行統(tǒng)計,并制成如下統(tǒng)計圖.
(1)求扇形統(tǒng)計圖中, “乘坐1人”所對應(yīng)的圓心角度數(shù);
(2)估計去年月日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);
(3)據(jù)旅游局預(yù)報今年月日這天該景區(qū)可能將增加游客300人,請你為景區(qū)預(yù)計這天需安排多少艘4人座的自劃船才能滿足需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點C(1,3)、D(3,1)分別作x軸的垂線,垂足分別為A、B.
(1)求直線CD和直線OD的解析式;
(2)點M為直線OD上的一個動點,過M作x軸的垂線交直線CD于點N,是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標(biāo);若不存在,請說明理由;
(3)若△AOC沿CD方向平移(點C在線段CD上,且不與點D重合),在平移的過程中,設(shè)平移距離為t,△AOC與△OBD重疊部分的面積記為s,試求s與t的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com