21、如圖,拋物線的頂點為A(1,-4),且過點B(3,0).
(1)求該拋物線的解析式;
(2)將該拋物線向右平移幾個單位,可使平移后的拋物線經(jīng)過原點?并直接寫出平移后拋物線與x軸的另一個交點坐標.
分析:(1)根據(jù)題意設(shè)拋物線的解析式為頂點式方程y=a(x-1)2-4,然后利用待定系數(shù)法求拋物線的解析式即可;
(2)當拋物線經(jīng)過原點時,y=0;將其代入函數(shù)解析式求得x的值,即可求得平移后該圖象與x軸的交點.
解答:解:(1)依題意,設(shè)拋物線的解析式為y=a(x-1)2-4(1分)
∵拋物線經(jīng)過點B(3,0),
∴a(3-1)2-4=0
解得 a=1         (3分)
∴y=(x-1)2-4,即y=x2-2x-3(4分)

(2)令y=0,得x2-2x-3=0
解得x1=-1,x2=3(6分)
∴拋物線與x軸的兩個交點坐標分別是(3,0)和(-1,0)(7分)
∴拋物線向右平移1個單位后經(jīng)過坐標原點.(8分)
平移后與x軸的另一個交點坐標是(4,0)(9分)
點評:主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點為P(1,0),一條直線與拋物線相交于A(2,1),B(-
12
,m
)兩精英家教網(wǎng)點.
(1)求拋物線和直線AB的解析式;
(2)若M為線段AB上的動點,過M作MN∥y軸,交拋物線于點N,連接NP、AP,試探究四邊形MNPA能否為梯形?若能,求出此點M的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖,拋物線的頂點為P(-2,2),與y軸交于點A(0,3).若平移該拋物線使其頂點P沿直線移動到點P′(2,-2),點A的對應(yīng)點為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•峨眉山市二模)已知,如圖,拋物線的頂點為C(1,-2),直線y=kx+m與拋物線交于A、B兩點,其中OA=3,B點在y軸上.點P為線段AB上的一個動點(點P與點A、B不重合),過點P且垂直于x軸的直線與這條拋物線交于點E.
(1)求直線AB的解析式;
(2)設(shè)點P的橫坐標為x,求點E坐標(用含x的代數(shù)式表示);
(3)點D是直線AB與這條拋物線對稱軸的交點,是否存在點P,使得以點P、E、D為頂點的三角形與△AOB相似?若存在,請求出點P的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鄂爾多斯)如圖,拋物線的頂點為C(-1,-1),且經(jīng)過點A、點B和坐標原點O,點B的橫坐標為-3.
(1)求拋物線的解析式;
(2)若點D為拋物線上的一點,點E為對稱軸上的一點,且以點A、O、D、E為
頂點的四邊形為平行四邊形,請直接寫出點D的坐標;
(3)若點P是拋物線第一象限上的一個動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案