【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,則B、D兩點(diǎn)間的距離為 .
【答案】
【解析】解: 在△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AED,
∴∠DEA=∠C=90°,AE=AC=4,DE=BC=3,
∴BE=AB﹣AE=5﹣4=1,
連接BD,在Rt△BDE中,由勾股定理可得BD= = = ,
即B、D兩點(diǎn)間的距離為 ,
所以答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(﹣3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是、 .
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B與點(diǎn)E、F重合,畫出△DEF.
并直接寫出E、F的坐標(biāo).
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對應(yīng)點(diǎn)M′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩地盛產(chǎn)柑桔,地有柑桔200噸,地有柑桔300噸.現(xiàn)將這些柑桔運(yùn)到C、D兩個(gè)冷藏倉庫,已知倉庫可儲存240噸,倉庫可儲存260噸;從地運(yùn)往C、D兩處的費(fèi)用分別為每噸20元和25元,從地運(yùn)往C、D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從地運(yùn)往倉庫的柑桔重量為x噸,A、B兩地運(yùn)往兩倉庫的柑桔運(yùn)輸費(fèi)用分別為yA元和yB元.
(1)請?zhí)顚懴卤砗蠓謩e求出yA,yB之間的函數(shù)關(guān)系式,并寫出定義域;
C | D | 總計(jì) | |
A | x噸 | 200噸 | |
B | 300噸 | ||
總計(jì) | 240噸 | 260噸 | 500噸 |
(2)試討論A,B兩地中,哪個(gè)運(yùn)費(fèi)較少;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,6)和點(diǎn)B在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)連接AB,在線段DC上是否存在一點(diǎn)E,使△ABE的面積等于5?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
取每一行的第n個(gè)數(shù),依次記為x、y、z.如上圖中,當(dāng)n=2時(shí),x=﹣4,y=﹣3,z=2.
(1)當(dāng)n=7時(shí),請直接寫出x、y、z的值,并求這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差;
(2)已知n為偶數(shù),且x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;
(3)若m=x+y+z,則x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為 (用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AC為直徑的⊙O分別交AB,BC于點(diǎn)D,E,點(diǎn)F在AB的延長線上,2∠BCF=∠BAC.
(1)求∠ADE的度數(shù).
(2)求證:直線CF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊菱形菜地ABCD中,對角線AC與BD相交于點(diǎn)O,若在菱形菜地內(nèi)均勻地撒上種子,則種子落在陰影部分的概率是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,點(diǎn)M是AB的中點(diǎn),P是對角線AC上的一個(gè)動點(diǎn),若PM+PB的最小值是9,則AB的長是( )
A.6
B.3
C.9
D.4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形OABC的兩邊OA、OC分別落在x軸、y軸的正半軸上,等腰Rt△ADE的兩個(gè)頂點(diǎn)D、E和正方形頂點(diǎn)B三點(diǎn)在一條直線上.
(1)如圖1,連接OD,求證:△OAD≌△BAE;
(2)如圖2,連接CD,求證:BE﹣DE=CD;
(3)如圖3,當(dāng)圖1中的Rt△ADE的頂點(diǎn)D與點(diǎn)B重合時(shí),點(diǎn)E正好落在x軸上,F(xiàn)為線段OC上一動點(diǎn)(不與O、C重合),G為線段AF的中點(diǎn),若CG⊥GK交BE于點(diǎn)K時(shí),請問∠KCG的大小是否變化?若不變,請求其值;若改變,求出變化的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com