【題目】如圖,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點(diǎn)D,且AB=4,BD=5,那么點(diǎn)D到BC的距離是 .
【答案】3
【解析】解:過點(diǎn)D作DE⊥BC于E,
∵在Rt△ABC中,∠A=90°,BD平分∠ABC,
即AD⊥BA,
∴DE=AD,
∵在Rt△ABD中,∠A=90°,AB=4,BD=5,
∴AD= =3,
∴DE=AD=3,
∴點(diǎn)D到BC的距離是3.
所以答案是:3.
【考點(diǎn)精析】關(guān)于本題考查的角平分線的性質(zhì)定理和勾股定理的概念,需要了解定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若2m-4與3m-1是同一個(gè)數(shù)的兩個(gè)不等的平方根,則這個(gè)數(shù)是( )
A. 2B. 一2C. 4D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-4x與x軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對稱軸交于點(diǎn)Q.
(1)這條拋物線的對稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 ;
(2)若兩個(gè)三角形面積滿足S△POQ=S△PAQ,求m的值;
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國多個(gè)城市遭遇霧霾天氣,空氣中可吸入顆粒(又稱PM2.5)濃度升高,為應(yīng)對空氣污染,小強(qiáng)家購買了空氣凈化器,該裝置可隨時(shí)顯示室內(nèi)PM2.5的濃度,并在PM2.5濃度超過正常值25(mg/m3)時(shí)吸收PM2.5以凈化空氣.隨著空氣變化的圖象(如圖),請根據(jù)圖象,解答下列問題:
(1)寫出點(diǎn)M的實(shí)際意義;
(2)求第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式;
(3)已知第5﹣6小時(shí)是小強(qiáng)媽媽做晚餐的時(shí)間,廚房內(nèi)油煙導(dǎo)致PM2.5濃度升高.若該凈化器吸收PM2.5的速度始終不變,則第6小時(shí)之后,預(yù)計(jì)經(jīng)過多長時(shí)間室內(nèi)PM2.5濃度可恢復(fù)正常?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)三角形中,各邊和它所對角的正弦的比相等.即 .利用上述結(jié)論可以求解如下題目.如:
在中,若∠A=45°,∠B=30°,a=6,求b.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n的圖象經(jīng)過點(diǎn)A(2,3),對稱軸為直線x=1,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A,交x軸于點(diǎn)P,交拋物線于另一點(diǎn)B,點(diǎn)A、B位于點(diǎn)P的同側(cè).
(1)求拋物線的解析式;
(2)若PA:PB=3:1,求一次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)k>0時(shí),拋物線的對稱軸上是否存在點(diǎn)C,使得⊙C同時(shí)與x軸和直線AP都相切,如果存在,請求出點(diǎn)C的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com