【題目】綜合與探究

問題情境:

在綜合實(shí)踐課上,李老師讓同學(xué)們根據(jù)如下問題情境,寫出兩個(gè)數(shù)學(xué)結(jié)論:如圖(1),正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)O又是正方形OEFG的一個(gè)頂點(diǎn)(正方形OEFG的邊長(zhǎng)足夠長(zhǎng)),將正方形OEFG繞點(diǎn)O做旋轉(zhuǎn)實(shí)驗(yàn),OEBC交于點(diǎn)M,OGDC交于點(diǎn)N

“興趣小組”寫出的兩個(gè)數(shù)學(xué)結(jié)論是:

SOMC+SONCS正方形ABCD;

BM2+CM22OM2

問題解決:

1)請(qǐng)你證明“興趣小組”所寫的兩個(gè)結(jié)論的正確性.

類比探究:

2)解決完“興趣小組”的兩個(gè)問題后,老師讓同學(xué)們繼續(xù)探究,再提出新的問題;“智慧小組“提出的問題是:如圖(2),將正方形OEFG在圖(1)的基礎(chǔ)上旋轉(zhuǎn)一定的角度,當(dāng)OECB的延長(zhǎng)線交于點(diǎn)M,OGDC的延長(zhǎng)線交于點(diǎn)N,則“興趣小組”所寫的兩個(gè)結(jié)論是否仍然成立?請(qǐng)說明理由.

【答案】1)詳見解析;(2)結(jié)論不成立,結(jié)論成立,理由詳見解析.

【解析】

1利用正方形的性質(zhì)判斷出△BOM≌△CON,利用面積和差即可得出結(jié)論;

先得出OMON,BMCN,再用勾股定理即可得出結(jié)論;

2)同(1)的方法即可得出結(jié)論.

解:(1∵正方形ABCD的對(duì)角線相交于O,

SBOCS正方形ABCDOBOC,∠BOC90°,∠OBM=∠OCN

∵四邊形OEFG是正方形,

∴∠MON90°,

∴∠BOC﹣∠MOC=∠MON﹣∠MOC,

∴∠BOM=∠COM

∴△BOM≌△CON,

SBOMSCON,

SOMC+SONCSOMC+SBOMS正方形ABCD

知,△BOM≌△CON,

OMONBMCN,

RtMCN中,MN2CM2+CN2CM2+BM2,

RtMON中,MN2OM2+ON22OM2

BM2+CM22OM2;

2)結(jié)論不成立,

理由:∵正方形ABCD的對(duì)角線相交于O,

SBOCS正方形ABCDOBBD,OCAC,ACBD,ACBD,∠ABC=∠BCD90°,AC平分∠BCD,BD平分∠ABC,

OBOC,∠BOC90°,∠OBC=∠OCD45°,

∴∠OBM=∠OCN135°,

∵四邊形OEFG是正方形,

∴∠MON90°,

∴∠BOM=∠CON,

∴△BOM≌△CON,

SBOMSCON,

SOMCSBOMSOMCSCONSBOCS正方形ABCD,

∴結(jié)論不成立;

結(jié)論成立,理由:

如圖(2

連接MN,∵△BOM≌△CON

OMON,BMCN,

RtMCN中,MN2CM2+CN2CM2+BM2,

RtMON中,MN2OM2+ON22OM2

BM2+CM22OM2

∴結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1-2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、02.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).

1)請(qǐng)用表格或樹狀圖列出點(diǎn)A所有可能的坐標(biāo);

2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民使用自來水按月收費(fèi),標(biāo)準(zhǔn)如下:

①若每戶月用水不超過,按/收費(fèi);

②若超過,但不超過,則超過的部分按/收費(fèi),未超過部分按①標(biāo)準(zhǔn)收費(fèi);

③若超過,超過的部分按/收費(fèi),未超過部分按②標(biāo)準(zhǔn)收費(fèi);

1)若用水,應(yīng)交水費(fèi)______元;(用含的式子表示)

2)小明家上個(gè)月用水,交水費(fèi)元,求的值;

3)在(2)的條件下,小明家七、八兩個(gè)月共交水費(fèi)元,七月份用水超過,但不足,八月份用水超過,當(dāng)均為整數(shù)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABC=45°,E、F分別在CD和BC的延長(zhǎng)線上,AEBD,EFC=30°, AB=2.

求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,試判斷、、之間的關(guān)系.并說明理由.

2)如圖,.試判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線,可以將多邊形分割成若干個(gè)小三角形.如圖,給出了四邊形的三種具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形,這樣我們就可以借助研究三角形的經(jīng)驗(yàn)研究四邊形了.

圖①被分割成2個(gè)小三角形

圖②被分割成3個(gè)小三角形

圖③被分割成4個(gè)小三角形

1)請(qǐng)按照上述三種方法分別將圖中的六邊形進(jìn)行分割,并寫出每種方法所得到的小三角形的個(gè)數(shù):

圖①被分割成 個(gè)小三角形、圖②被分割成 個(gè)小三角形、圖③被分割成 個(gè)小三角形;

2)如果按照上述三種分割方法分別分割邊形,請(qǐng)寫出每種方法所得到的小三角形的個(gè)數(shù)(用含的代數(shù)式寫出結(jié)論即可,不必畫圖):按照上述圖①、圖②、圖③的分割方法,邊形分別可以被分割成 、 個(gè)小三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列個(gè)生產(chǎn)、生活現(xiàn)象中,可用“兩點(diǎn)之間線段最短”來解釋的是(

A.用兩根釘子就可以把木條固定在墻上

B.植樹時(shí),只要選出兩棵樹的位置,就能確定同一行樹所在的直線

C.把彎曲的公路改直,就能縮短路程

D.砌墻時(shí),經(jīng)常在兩個(gè)墻角的位置分別插一根木樁拉一條直的參照線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)在直線上,在直線的同側(cè),作射線平分

1)如圖1,若,直接寫出的度數(shù)為 的度數(shù)為 ;

2)如圖2,若,求的度數(shù);

3)若互為余角且,平分,試畫出圖形探究之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案