【題目】小儒在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考:
(1)他認(rèn)為該定理有逆定理,即“如果一個(gè)三角形某條邊上的中線等于該邊長的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立,你能幫小儒證明一下嗎?如圖①,在△ABC中,AD是BC邊上的中線,若AD=BD=CD,求證:∠BAC=90°.
(2)接下來,小儒又遇到一個(gè)問題:如圖②,已知矩形ABCD,如果在矩形外存在一點(diǎn)E,使得AE⊥CE,求證:BE⊥DE,請(qǐng)你作出證明,可以直接用到第(1)問的結(jié)論.
(3)在第(2)問的條件下,如果△AED恰好是等邊三角形,直接用等式表示出此時(shí)矩形的兩條鄰邊AB與BC的數(shù)量關(guān)系.
【答案】(1)見解析;(2)見解析;(3)BC=AB,理由見解析
【解析】
(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;
(2)先判斷出OEAC,即可得出OEBD,即可得出結(jié)論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.
解:(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如圖②,連接AC,BD,OE,
∵四邊形ABCD是矩形,
∴OA=OB=OC=ODACBD,
∵AE⊥CE,
∴∠AEC=90°,
∴OEAC,
∴OEBD,
∴∠BED=90°,
∴BE⊥DE;
(3)如圖3,∵四邊形ABCD是矩形,
∴AD=BC,∠BAD=90°,
∵△ADE是等邊三角形,
∴AE=AD=BC,∠DAE=∠AED=60°,
由(2)知,∠BED=90°,
∴∠BAE=∠BEA=30°,
過點(diǎn)B作BF⊥AE于F,
∴AE=2AF,在Rt△ABF中,∠BAE=30°,
∴AB=2BF,AF=BF,
∴AE=2BF,
∴AE=AB,
∴BC=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象與反比例函數(shù)y=﹣8x-1的函數(shù)交于A(﹣2,b),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線AB向下平移m(m>0)個(gè)單位長度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線:經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為,將拋物線向右平移個(gè)單位得到拋物線,交x軸于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左邊,交y軸于點(diǎn)C.
求拋物線的解析式.
如圖,當(dāng)時(shí),連接AC,過點(diǎn)A做交拋物線于點(diǎn)D,連接CD.
求拋物線的解析式.
直接寫出點(diǎn)D的坐標(biāo)為______.
若拋物線的對(duì)稱軸上存在點(diǎn)P,使為等邊三角形,請(qǐng)直接寫出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程x2+(2m+1)x+m2﹣1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,試求m的取值范圍;
(2)若拋物線y=x2+(2m+1)x+m2﹣1與直線y=x+m沒有交點(diǎn),試求m的取值范圍;
(3)求證:不論m取何值,拋物線y=x2+(2m+1)x+m2﹣1圖象的頂點(diǎn)都在一條定直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)四邊形被一條對(duì)角線分割成兩個(gè)三角形,如果分割所得的兩個(gè)三角形相似,我們就把這條對(duì)角線稱為相似對(duì)角線.
(1)如圖,正方形的邊長為4,為的中點(diǎn),點(diǎn),分別在邊和上,且,線段與交于點(diǎn),求證:為四邊形的相似對(duì)角線;
(2)在四邊形中,是四邊形的相似對(duì)角線,,,,求的長;
(3)如圖,已知四邊形是圓的內(nèi)接四邊形,,,,點(diǎn)是的中點(diǎn),點(diǎn)是射線上的動(dòng)點(diǎn),若是四邊形的相似對(duì)角線,請(qǐng)直接寫出線段的長度(寫出3個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣出5件,但每件售價(jià)不能高于50元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)點(diǎn)B為止;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿以2cm/s的速度向點(diǎn)D移動(dòng).經(jīng)過多長時(shí)間P、Q兩點(diǎn)的距離是10?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于點(diǎn)A、在B左側(cè),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)A的射線AF與y軸正半軸相交于點(diǎn)E,與拋物線的另一個(gè)交點(diǎn)為F,,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),點(diǎn)P是y軸上一點(diǎn),且,則點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)是平行四邊形ABCD對(duì)角線AC上兩點(diǎn),AE=CF=AC.連接DE,DF并延長,分別交AB,BC于點(diǎn)G,H,連接GH,則的值為( 。
A. B. C. D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com