【題目】如圖,如圖,在菱形中,,,把菱形繞點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到菱形,其中點(diǎn)的運(yùn)動(dòng)路徑為,則圖中陰影部分的面積為_________.
【答案】π+6-4
【解析】
連接CD'和BC',由菱形的性質(zhì)以及旋轉(zhuǎn)角為30°,可得A、D'、C及A、B、C'分別共線,求出扇形面積,再根據(jù)AAS證得兩個(gè)小三角形全等,求得其面積,最后根據(jù)扇形ACC'的面積-兩個(gè)小的三角形面積即可解答.
解:CD'和BC'
∵在菱形中,∠DAB=60°,
∴∠DAC=∠CAB=30°
∵旋轉(zhuǎn)角為30°
∴A、D'、C共線,同理:A、B、C'共線;
∴AC=2
∴扇形ACC'的面積為:
∵AC=AC', AD'=AB
∴在△OCD'和△OC'B中
∴△OCD'≌△OC'B(AAS)
∴OB=OD', CO=OC'
∵∠CBC'=60°,∠BC'O=30°
∴∠COD'=90°
∴C D'=AC'-AD=2-2, OD'=2- OC
∵AC=2
∴在Rt△D'OC中,解得:OD'=sin30°·C D'=-1,OC= cos30°·C D'=3-
∴S△D'OC= S△OC'B=2-3
∴陰影部分的面積為:π-2(2-3)= π+6-4
故答案為:π+6-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形ABCD中,點(diǎn)E,F是對(duì)角線AC的三等分點(diǎn),點(diǎn)P在正方形的邊上,則滿(mǎn)足PE+PF=的點(diǎn)P的個(gè)數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x﹣2與x軸,y軸分別交于點(diǎn)D,C.點(diǎn)G,H是線段CD上的兩個(gè)動(dòng)點(diǎn),且∠GOH=45°,過(guò)點(diǎn)G作GA⊥x軸于A,過(guò)點(diǎn)H作HB⊥y軸于B,延長(zhǎng)AG,BH交于點(diǎn)E,則過(guò)點(diǎn)E的反比例函數(shù)y=的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)交于一象限內(nèi)的P(,n),Q(4,m)兩點(diǎn),且tan∠BOP=:
(1)求反比例函數(shù)和直線的函數(shù)表達(dá)式;
(2)求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線,過(guò)點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.
⑴求證:四邊形BEDF為菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).
(1)∠DCB= 度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x= ;
(2)在點(diǎn)E,F(xiàn)的移動(dòng)過(guò)程中,點(diǎn)G始終在BD或BD的延長(zhǎng)線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;
(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=a(x2+2mx﹣3m2)(其中a,m是常數(shù)a<0,m>0)的圖象與x軸分別交于A、B(點(diǎn)A位于點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C(0,3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連結(jié)AD.過(guò)點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)求a與m的關(guān)系式;
(2)求證:為定值;
(3)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為F.探索:在x軸的正半軸上是否存在點(diǎn)G,連結(jié)GF,以線段GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?如果存在,只要找出一個(gè)滿(mǎn)足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)α=0°時(shí),=_______;
②當(dāng)α=180°時(shí),=______.
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
(3)問(wèn)題解決
△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線上時(shí),求線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=的圖象上,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com