【題目】如圖,在邊長為3的等邊ABC中,點(diǎn)DAC上,且CD1,點(diǎn)EAB上(不與點(diǎn)A、B重合),連接DE,把ADE沿DE折疊,當(dāng)點(diǎn)A的對應(yīng)點(diǎn)F落在等邊ABC的邊上時,AE的長為_____

【答案】15

【解析】

根據(jù)題意分類討論,當(dāng)F點(diǎn)落在邊BC上時,證明△DFC∽△FEB,F點(diǎn)落在邊AB上時,根據(jù)直角三角形的性質(zhì)求解;

①當(dāng)F點(diǎn)落在邊BC上時,

∵把△ADE沿DE折疊,

∴∠A=∠EFD60°,

∵∠EFC=∠B+BEF

∴∠EFD+DFC=∠B+BEF

∵∠EFD=∠A=∠B60°,

∴∠DFC=∠BEF

∴△DFC∽△FEB,

,

EF+BEEA+BEAB3,DFDAACCD2

,

解得AE5,或AE5+(舍去);

F點(diǎn)落在邊AB上時,

∵把△ADE沿DE折疊,

∴∠A=∠DFE60°,∠DEA90°,∠ADE=∠FDE,

∴∠ADE30°,

AEADACCD)=×21

A答案為15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3y軸交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A和點(diǎn)B,過點(diǎn)AACAB交拋物線于點(diǎn)C,過點(diǎn)CCDy軸于點(diǎn)D,點(diǎn)E在線段AC上,連接ED,且EDEC,連接EBy軸于點(diǎn)F

1)求拋物線的表達(dá)式;

2)求點(diǎn)C的坐標(biāo);

3)若點(diǎn)G在直線AB上,連接FG,當(dāng)AGFAFB時,直接寫出線段AG的長;

4)在(3)的條件下,點(diǎn)H在線段ED上,點(diǎn)P在平面內(nèi),當(dāng)PAG≌△PDH時,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,正方形ABCD的邊長為6,點(diǎn)E,點(diǎn)F分別在邊AB,AD上,AEDF2,連接DE,CF交于點(diǎn)G.連接ACDE交于點(diǎn)M,延長CB至點(diǎn)K,使BK3,連接GKAB于點(diǎn)N

(1)求證:CFDE

(2)求△AMD的面積;

(3)請直接寫出線段GN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,P'是邊AB上一點(diǎn),四邊形P'Q'M'N'是正方形,點(diǎn)Q',在邊BC上,點(diǎn)N'在△ABC內(nèi).連接BN',并延長交AC于點(diǎn)N,NMBC于點(diǎn)M,NPMNAB于點(diǎn)P,PQBC于點(diǎn)Q

1)求證:四邊形PQMN為正方形;

2)若∠A=90°,AC=1.5m,△ABC的面積=1.5m2.求PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),點(diǎn)C在反比例函數(shù)的圖像上,過點(diǎn)C軸于點(diǎn)D,連接,已知

1,點(diǎn)A的坐標(biāo)為________________

2)點(diǎn)在線段上,連接,且,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新冠肺炎疫情期間,我市某企業(yè)為支援湖北,準(zhǔn)備將購買的70噸蔬菜運(yùn)往武漢,現(xiàn)有甲、乙兩種貨車可以租用,已知2輛甲貨車和3輛乙貨車一次可運(yùn)44噸蔬菜;3輛甲貨車和1輛乙貨車一次可運(yùn)38噸蔬菜.

1)求每輛甲種貨車和每輛乙種貨車一次分別能運(yùn)多少噸蔬菜?

2)已知甲種貨車每輛租金500元,乙種貨車每輛租金450元,該企業(yè)共租用甲、乙兩種貨車8輛,設(shè)租甲種貨車a輛,求租車總費(fèi)用w(元)與a之間的函數(shù)關(guān)系式,并求出自變量a的取值范圍;

3)在(2)的條件下,請你為該企業(yè)設(shè)計出費(fèi)用最少的方案,并求出最少的租車費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn)

1 ,

2)根據(jù)函數(shù)圖象知,

當(dāng)時,的取值范圍是 ;

當(dāng) 時,

3)過點(diǎn)軸于點(diǎn),點(diǎn)是反比例函數(shù)在第一象限的圖象上一點(diǎn),設(shè)直線與線段交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).

4)點(diǎn)軸上的一個動點(diǎn),當(dāng)△MBC為直角三角形時,直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄂爾多斯市某百貨商場銷售某一熱銷商品A,其進(jìn)貨和銷售情況如下:用16000元購進(jìn)一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場需求情況,該商場又用7500元購進(jìn)第二批該商品,已知第二批所購件數(shù)是第一批所購件數(shù)的一半,且每件商品的進(jìn)價比第一批的進(jìn)價少10元.

1)求商場第二批商品A的進(jìn)價;

2)商場同時銷售另一種熱銷商品B,已知商品B的進(jìn)價與第二批商品A的進(jìn)價相同,且最初銷售價為165元,每天能賣出125件,經(jīng)市場銷售發(fā)現(xiàn),若售價每上漲1元,其每天銷售量就減少5件,問商場該如何定售價,每天才能獲得最大利潤?并求出每天的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案