【題目】我們把滿足下面條件的△ABC稱為“黃金三角形”:
①△ABC是等腰三角形;②在三角形的某條邊上存在不與頂點重合的點P,使得P與P所在邊的對角頂點連線把△ABC分成兩個不全等的等腰三角形.
(1)△ABC中,AB=AC,∠A:∠C=1:2,可證△ABC是“黃金三角形”,此時∠A的度數(shù)為_________.
(2)△ABC中,AB=AC, ∠A為鈍角.若△ABC為“黃金三角形”,則∠A的度數(shù)為________.
【答案】
【解析】
(1)根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和求解即可;
(2)畫出圖形,根據(jù)等腰三角形性質(zhì)、外角定理及三角形內(nèi)角和即可求出答案.
解:(1)∵∠A:∠C=1:2,
∴設(shè)∠A=x,則∠C=2x,
∵AB=AC,
∴∠B=∠C=2x,
∵∠A+∠B+∠C=180°,
∴x+2x+2x=180°,
∴x=36°,即∠A=36°;
(2)△ABC如圖所示,
∵△ABC為“黃金三角形”,
∴AB=AC,AD=BD,AC=CD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=∠BAD+∠CAD=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°,
故答案為:36°; 108°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為CD上一點,連接BE, ∠EBC=15°,將ΔEBC繞點C按順時針方向旋轉(zhuǎn)90°得到ΔFDC,連接EF,則∠EFD的度數(shù)為( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為( )
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數(shù)y= (x>0)的圖象經(jīng)過點B.
(1)求點B的坐標和反比例函數(shù)的關(guān)系式;
(2)如圖2,將線段OA延長交y= (x>0)的圖象于點D,過B,D的直線分別交x軸、y軸于E,F兩點,①求直線BD的解析式;②求線段ED的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點A、點B在直線l異側(cè),以點A為圓心,AB長為半徑作弧交直線l于C、D兩點.分別以C、D為圓心,AB長為半徑作弧,兩弧在l下方交于點E,連結(jié)AE.
(1)根據(jù)題意,利用直尺和圓規(guī)補全圖形;
(2)證明:l垂直平分AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com