【題目】給出下列說法: ①兩條直線被第三條直線所截,同位角相等;
②平面內(nèi)的一條直線和兩條平行線中的一條相交,則它與另一條也相交;
③相等的兩個(gè)角是對頂角;
④從直線外一點(diǎn)到這條直線的垂線段,叫做這點(diǎn)到直線的距離.
其中正確的有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

【答案】B
【解析】解:①同位角只是一種位置關(guān)系,只有兩條直線平行時(shí),同位角相等,錯(cuò)誤;②強(qiáng)調(diào)了在平面內(nèi),正確;③不符合對頂角的定義,錯(cuò)誤;④直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離,不是指點(diǎn)到直線的垂線段的本身,而是指垂線段的長度.故選:B. 正確理解對頂角、同位角、相交線、平行線、點(diǎn)到直線的距離的概念,逐一判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)點(diǎn)P在拋物線的對稱軸上,當(dāng)△ACP的周長最小時(shí),求出點(diǎn)P的坐標(biāo);

(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的RtDNMRt△BOC相似,若存在,請求出所有符合條件的點(diǎn)N的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(﹣x2y5)(xy)3
(2)4a(a﹣b+1);
(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。

A.a3a32a3B.a32a5

C.a5÷a3a2D.(﹣2a2=﹣4a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課堂上,老師給出了如下一道探究題:“如圖,在邊長為1的正方形組成的6×8的方格中,△ABC和△A1B1C1的頂點(diǎn)都在格點(diǎn)上,且△ABC≌△A1B1C1.請利用平移或旋轉(zhuǎn)變換,設(shè)計(jì)一種方案,使得△ABC通過一次或兩次變換后與△A1B1C1完全重合.”

(1)小明的方案是:“先將△ABC向右平移兩個(gè)單位得到△A2B2C2,再通過旋轉(zhuǎn)得到△A1B1C1”.請根據(jù)小明的方案畫出△A2B2C2,并描述旋轉(zhuǎn)過程;

(2)小紅通過研究發(fā)現(xiàn),△ABC只要通過一次旋轉(zhuǎn)就能得到△A1B1C1.請?jiān)趫D中標(biāo)出小紅方案中的旋轉(zhuǎn)中心P,并簡要說明你是如何確定的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.兩直線與第三條直線相交,同位角相等
B.兩直線與第三條直線相交,內(nèi)錯(cuò)角相等
C.兩直線平行,內(nèi)錯(cuò)角相等
D.兩直線平行,同旁內(nèi)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b中,y隨x的增大而增大,b<0,則這個(gè)函數(shù)的圖象不經(jīng)過( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列性質(zhì)中,菱形具有而平行四邊形不具有的性質(zhì)是(
A.對邊平行且相等
B.對角線互相平分
C.對角線互相垂直
D.對角互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若A(﹣1,y1),B(﹣5,y2),C(0,y3)為二次函數(shù)y=x2+4x﹣5的圖象上的三點(diǎn),則y1 , y2 , y3的大小關(guān)系是(
A.y1<y2<y3
B.y2<y1<y3
C.y3<y1<y2
D.y1<y3<y2

查看答案和解析>>

同步練習(xí)冊答案