【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,∠AOB=120°
(1)求tan∠OAB的值;
(2)求圖中陰影部分的面積S;
(3)在⊙O上一點P從A點出發(fā),沿逆時針方向運動一周,回到點A,在點P的運動過程中,滿足S△POA=S△AOB時,直接寫出P點所經過的弧長(不考慮點P與點B重合的情形).
【答案】(1);(2)(π﹣)cm2;(3)P點所經過的弧長為 πcm或πcm或πcm.
【解析】試題分析:(1)、根據等腰三角形的性質求出∠OAB的角度,從而根據特殊角的三角函數值求出它的值;(2)、陰影部分的面積等于扇形AOB的面積減去△OAB的面積;(3)、本題需要分∠AOP=60°、∠AOP=120°和點P在弧AB上三種情況來分別進行計算,得出答案.
試題解析:(1)、解:∵OA=OB, ∴∠OAB=∠OBA,
∵∠OAB= (180°﹣120°)=30°, ∴tan∠OAB=tan30°=;
(2)、解:作OC⊥AB于C,如圖,則AC=BC,
在Rt△OAC中,OC=OA=1,AC=OC=, ∴AB=2AC=2,
∴S弓形AB=S扇形AOB﹣S△AOB=﹣2 1=(π﹣)cm2;
(3)、解:延長BO交⊙O于P, ∵OP=OB, ∴此時S△AOP=S△AOB,
∵∠AOP=∠OAB+∠OBA=60°, ∴此時P點所經過的弧長=π(cm);
當點P在弧AB上,且∠AOP=60°時,時S△AOP=S△AOB ,
此時P點所經過的弧長=2π2﹣π=π(cm);
當∠AOP=120時,S△AOP=S△AO, ∴此時P點所經過的弧長=π(cm);
綜上所述,P點所經過的弧長為πcm或πcm或πcm.
科目:初中數學 來源: 題型:
【題目】“龜兔賽跑”的故事同學們非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時路程與時間的關系,請你根據圖中給出的信息,解決下列的問題:
(1)折線OABC表示賽跑過程中__________(填“兔子”或“烏龜”)的路程與時間的關系,賽跑的全程是_________米;
(2)烏龜用了多少分鐘追上正在睡覺的兔子?
(3)兔子醒來,以400米/分的速度跑向終點,結果還是比烏龜晚到了0.5分鐘,請你計算兔子中間睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入—進貨成本)
(1)求、兩種型號的電器的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?
(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列內容,并答題:我們知道,計算n邊形的對角線條數公式為: n(n﹣3).
如果一個n邊形共有20條對角線,那么可以得到方程n(n﹣3)=20 .
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數,∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據以上內容,問:
(1)若一個多邊形共有14條對角線,求這個多邊形的邊數;
(2)A同學說:“我求得一個多邊形共有10條對角線”,你認為A同學說法正確嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,點A(1,8),B(1,6),C(7,6).
(1)請直接寫出點D的坐標;
(2)連接線段OB,OD,BD,請求出△OBD的面積;
(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)
(1)求a、b的值;
(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;
(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則下列結論正確的有( )
①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.
A. 1個B. 2個
C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.
(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數量的筆記本嗎?
(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數a,使得每本硬面筆記本、軟面筆記本的價格都是正整數,并且小明和小麗能買到相同數量的筆記本?若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設它的面積為S.
(1)如圖①,點M為AD上任意一點,若△BCM的面積為S1,則S1:S= ;
(2)如圖②,點P為平行四邊形ABCD內任意一點時,記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數量關系式為 ;
(3)如圖③,已知點P為平行四邊形ABCD內任意一點,△PAB的面積為3,△PBC的面積為7,求△PBD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com