【題目】因式分解:
(1)
(2)3ax2+6axy+3ay2
(3)16(x-1)2 -9(x+2)2
【答案】(1)ab(a+b)(a-b)(2)3a(x+y)2(3)(7x+2)(x-10)
【解析】
(1)先提取公因式ab,再用平方差公式繼續(xù)分解;
(2)先提取公因式3a,再用完全平方公式繼續(xù)分解;
(3)變形后用平方差公式分解即可.
(1)a3 b-a b3=ab(a2 - b2)
=ab (a+b)(a-b) ;
(2) 3ax 2+6axy+3ay 2 =3a(x2+2xy+y2)
=3a(x+y)2 ;
(3) (3)16(x-1)2 -9(x+2)2 =[4(x-1)] 2-[3(x+2)]2
=(4x-4+3x+6)(4x-4-3x-6)
=(7x+2)(x-10) .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)Q的運(yùn)動速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以1.5cm/s的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動,則經(jīng)過_____秒后,點(diǎn)P與點(diǎn)Q第一次在△ABC的AC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對應(yīng)值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為________;
②該函數(shù)的一條性質(zhì):__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6cm的正方形ABCD中,點(diǎn)E、F、G、H分別從點(diǎn)A、B、C、D同時(shí)出發(fā),均以1cm/s的速度向點(diǎn)B、C、D、A勻速運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),四個(gè)點(diǎn)同時(shí)停止運(yùn)動,在運(yùn)動過程中,當(dāng)運(yùn)動時(shí)間為s時(shí),四邊形EFGH的面積最小,其最小值是cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=﹣ ax2+ ax+3a(a≠0)與x軸交于A和點(diǎn)B(A在左,B在右),與y軸的正半軸交于點(diǎn)C,且OB=OC.
(1)求拋物線的解析式;
(2)若D為OB中點(diǎn),E為CO中點(diǎn),動點(diǎn)F在y軸的負(fù)半軸上,G在線段FD的延長線上,連接GE、ED,若D恰為FG中點(diǎn),且S△GDE= ,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,動點(diǎn)P在線段OB上,動點(diǎn)Q在OC的延長線上,且BP=CQ.連接PQ與BC交于點(diǎn)M,連接GM并延長,GM的延長線交拋物線于點(diǎn)N,連接QN、GP和GB,若角滿足∠QPG﹣∠NQP=∠NQO﹣∠PGB時(shí),求NP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)人們的節(jié)約用水意識,環(huán)節(jié)城市用水壓力。某市規(guī)定,每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上采取兩種不同的收費(fèi)標(biāo)準(zhǔn).下圖為該市的用戶每月應(yīng)交水費(fèi)y(元)關(guān)于用水量x(立方米)的函數(shù)圖像.思考并回答下列問題:
(1)求出用水量小于18立方米時(shí),每月應(yīng)交水費(fèi)y(元)關(guān)于用水量x(立方米)的函數(shù)表達(dá)式.
(2)若小明家某月交水費(fèi)81元,則這個(gè)月用水量為多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字,然后回答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),所以的小數(shù)部分我們不可能全部寫出來,由于的整數(shù)部分是1,將 減去它的整數(shù)部分,差就是它的小數(shù)部分,因此的小數(shù)部分可用﹣1表示.
由此我們得到一個(gè)真命題:如果=x+y,其中x是整數(shù),且0<y<1,那么x=1,y=﹣1.
請解答下列問題:
(1)如果=a+b,其中a是整數(shù),且0<b<1,那么a= ,b= ;
(2)如果﹣=c+d,其中c是整數(shù),且0<d<1,那么c= ,d= ;
(3)已知2+=m+n,其中m是整數(shù),且0<n<1,求|m﹣n|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com