【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.

(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);

(2)試求何時(shí)△PBQ是直角三角形?

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù).

【答案】(1)在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ不變,∠CMQ=60°;(2)當(dāng)t ss 時(shí),△PBQ為直角三角形;(3)在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ的大小不變,∠CMQ=120°.

【解析】試題分析:(1)利用等邊三角形的性質(zhì)可證明△APC≌△BQA,則可求得∠BAQ=∠ACP,再利用三角形外角的性質(zhì)可證得∠CMQ=60°;

(2)可用t分別表示出BPBQ,分∠BPQ=90°和∠BPQ=90°兩種情況,分別利用直角三角形的性質(zhì)可得到關(guān)于t的方程,則可求得t的值;

(3)同(1)可證得△PBC≌△QCA,再利用三角形外角的性質(zhì)可求得∠CMQ=120°.

試題解析:(1)∵△ABC為等邊三角形,

AB=AC,B=PAC=60°,

∵點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,

AP=BQ,

在△APC和△BQA,

∴△APC≌△BQA(SAS),

∴∠BAQ=ACP,

∴∠CMQ=CAQ+∠ACP=BAQ+∠CAQ=BAC=60°,

∴在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ不變,∠CMQ=60°;

(2)∵運(yùn)動(dòng)時(shí)間為ts,則AP=BQ=t,

PB=4﹣t,

當(dāng)∠PQB=90°時(shí),

∵∠B=60°,

PB=2BQ,

4﹣t=2t,解得t=

當(dāng)∠BPQ=90°時(shí),

∵∠B=60°,

BQ=2PB,

t=2(4﹣t),解得t=,

∴當(dāng)t ss 時(shí),△PBQ為直角三角形;

(3)在等邊三角形ABC中,AC=BC,ABC=BCA=60°,

∴∠PBC=QCA=120°,且BP=CQ,

在△PBC和△QCA,

∴△PBC≌△QCA(SAS),

∴∠BPC=MQC,

又∵∠PCB=MCQ,

∴∠CMQ=PBC=120°,

∴在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ的大小不變,∠CMQ=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)多邊形內(nèi)角和為900°,則這個(gè)多邊形是 邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,連接AD、DE

(1)求證:DBC的中點(diǎn);

(2)若DE=3,BDAD=2,求⊙O的半徑;

(3)在(2)的條件下,求弦AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,不正確的是(
A.8的立方根是2
B.﹣8的立方根是﹣2
C.0的立方根是0
D.125的立方根是±5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各點(diǎn)在一次函數(shù)y=2x﹣3的圖象上的是(  )

A. ( 2,3) B. (2,1) C. (0,3) D. (3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果多項(xiàng)式x2﹣mx+9是一個(gè)完全平方式,那么m的值為( )
A.﹣3
B.﹣6
C.±3
D.±6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A在第四象限,且它到x軸的距離等于2,到y(tǒng)軸的距離等于3,則點(diǎn)A的坐標(biāo)為( 。

A. (3,﹣2) B. (3,2) C. (2,﹣3) D. (2,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a2)2+|b3|=0,那么3a5b的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大學(xué)生小李自主創(chuàng)業(yè),春節(jié)期間購(gòu)進(jìn)100只兩種型號(hào)的文具進(jìn)行銷(xiāo)售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:

型號(hào)

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

A型

10

12

B型

15

23

要使銷(xiāo)售文具所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,求至少要購(gòu)進(jìn)多少只A型文具?

查看答案和解析>>

同步練習(xí)冊(cè)答案