【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點(diǎn)C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=-x2+4x+5(2)m的值為7或9(3)Q點(diǎn)的坐標(biāo)為(﹣2,﹣7)或(6,﹣7)或(4,5)
【解析】試題(1)由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;
(2)由題意可求得C點(diǎn)坐標(biāo),設(shè)平移后的點(diǎn)C的對應(yīng)點(diǎn)為C′,則C′點(diǎn)的縱坐標(biāo)為8,代入拋物線解析式可求得C′點(diǎn)的坐標(biāo),則可求得平移的單位,可求得m的值;
(3)由(2)可求得E點(diǎn)坐標(biāo),連接BE交對稱軸于點(diǎn)M,過E作EF⊥x軸于點(diǎn)F,當(dāng)BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,則可證得△PQN≌△EFB,可求得QN,即可求得Q到對稱軸的距離,則可求得Q點(diǎn)的橫坐標(biāo),代入拋物線解析式可求得Q點(diǎn)坐標(biāo);當(dāng)BE為對角線時,由B、E的坐標(biāo)可求得線段BE的中點(diǎn)坐標(biāo),設(shè)Q(x,y),由P點(diǎn)的橫坐標(biāo)則可求得Q點(diǎn)的橫坐標(biāo),代入拋物線解析式可求得Q點(diǎn)的坐標(biāo).
試題解析:(1)∵拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點(diǎn),
∴,解得,
∴拋物線解析式為y=﹣x2+4x+5;
(2)∵AD=5,且OA=1,
∴OD=6,且CD=8,
∴C(﹣6,8),
設(shè)平移后的點(diǎn)C的對應(yīng)點(diǎn)為C′,則C′點(diǎn)的縱坐標(biāo)為8,
代入拋物線解析式可得8=﹣x2+4x+5,解得x=1或x=3,
∴C′點(diǎn)的坐標(biāo)為(1,8)或(3,8),
∵C(﹣6,8),
∴當(dāng)點(diǎn)C落在拋物線上時,向右平移了7或9個單位,
∴m的值為7或9;
(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,
∴拋物線對稱軸為x=2,
∴可設(shè)P(2,t),
由(2)可知E點(diǎn)坐標(biāo)為(1,8),
①當(dāng)BE為平行四邊形的邊時,連接BE交對稱軸于點(diǎn)M,過E作EF⊥x軸于點(diǎn)F,當(dāng)BE為平行四邊形的邊時,過Q作對稱軸的垂線,垂足為N,如圖,
則∠BEF=∠BMP=∠QPN,
在△PQN和△EFB中
∴△PQN≌△EFB(AAS),
∴NQ=BF=OB﹣OF=5﹣1=4,
設(shè)Q(x,y),則QN=|x﹣2|,
∴|x﹣2|=4,解得x=﹣2或x=6,
當(dāng)x=﹣2或x=6時,代入拋物線解析式可求得y=﹣7,
∴Q點(diǎn)坐標(biāo)為(﹣2,﹣7)或(6,﹣7);
②當(dāng)BE為對角線時,
∵B(5,0),E(1,8),
∴線段BE的中點(diǎn)坐標(biāo)為(3,4),則線段PQ的中點(diǎn)坐標(biāo)為(3,4),
設(shè)Q(x,y),且P(2,t),
∴x+2=3×2,解得x=4,把x=4代入拋物線解析式可求得y=5,
∴Q(4,5);
綜上可知Q點(diǎn)的坐標(biāo)為(﹣2,﹣7)或(6,﹣7)或(4,5).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊上一動點(diǎn),矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是( )
A.6B.12C.24D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個數(shù)a,b,c,用max{a,b,c}表示這三個數(shù)中最大數(shù),例如:max{-2,1,0}=1,max
解決問題:
(1)填空:max{1,2,3}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;
(2)如果max{2,x+2,-3x-7}=5,求x的值;
(3)如圖,在同一坐標(biāo)系中畫出了三個一次函數(shù)的圖象:y=-x-3,y=x-1和y=3x-3請觀察這三個函數(shù)的圖象,
①在圖中畫出max{-x-3,x-1,3x-3}對應(yīng)的圖象(加粗);
②max{-x-3,x-1,3x-3}的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在中,,∠ABC=30°,,點(diǎn)、E分別是邊、AC上動點(diǎn),點(diǎn)不與點(diǎn)、重合,DE∥BC.
(1)如圖1,當(dāng)AE=1時,求長;
(2)如圖2,把沿著直線翻折得到,設(shè)
①當(dāng)點(diǎn)F落在斜邊上時,求的值;
② 如圖3,當(dāng)點(diǎn)F落在外部時,EF、DF分別與相交于點(diǎn)H、G,如果△ABC和△DEF重疊部分的面積為,求與的函數(shù)關(guān)系式及定義域.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(diǎn)(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說法正確的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工“適度取餐,減少浪費(fèi)”該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個部門中隨機(jī)抽取了兩個部門,進(jìn)行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費(fèi)飯菜的重量,以下簡稱“每日餐余重量”(單位:千克),并對這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在這兩個部門中,“適度取餐,減少浪費(fèi)”做得較好的部門是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個部門)一年(按240個工作日計(jì)算)的餐余總重量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)市場香蕉的價(jià)格如下表
購買香蕉數(shù)(千克) | 不超過20千克 | 20千克以上但不超過40千克 | 40千克以上 |
每千克的價(jià)格 | 6元 | 5元 | 4元 |
張強(qiáng)兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強(qiáng)第一次,第二次分別購買香蕉多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,,點(diǎn)為的中點(diǎn),點(diǎn)在上,,將線段繞點(diǎn)按順時針方向旋轉(zhuǎn)得到,連接,然后把沿著翻折得到,連接,,取的中點(diǎn),連接,則的長為( )
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.
(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)M是拋物線上的動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.
①當(dāng)∠MBA=∠BDE時,求點(diǎn)M的坐標(biāo);
②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com