【題目】如圖1,等邊ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作、、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設(shè)點l為對稱軸的交點.

(1)如圖2,將這個圖形的頂點A與線段MN作無滑動的滾動,當(dāng)它滾動一周后點A與端點N重合,則線段MN的長為 ;

(2)如圖3,將這個圖形的頂點A與等邊DEF的頂點D重合,且ABDE,DE=2π,將它沿等邊DEF的邊作無滑動的滾動當(dāng)它第一次回到起始位置時,求這個圖形在運動過程中所掃過的區(qū)域的面積;

(3)如圖4,將這個圖形的頂點BO的圓心O重合,O的半徑為3,將它沿O的圓周作無滑動的滾動,當(dāng)它第n次回到起始位置時,點I所經(jīng)過的路徑長為 (請用含n的式子表示)

【答案】(1)3π;(2)27π;(3)2nπ.

【解析】試題分析:(1)先求出的弧長,繼而得出萊洛三角形的周長為3π,即可得出結(jié)論;

2)先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可;

3)先判斷出萊洛三角形的一個頂點和O重合旋轉(zhuǎn)一周點I的路徑,再用圓的周長公式即可得出.

試題解析:解:(1)∵等邊△ABC的邊長為3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴線段MN的長為=3π.故答案為:3π;

2)如圖1.∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,ABDE,AGAF,∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區(qū)域的面積為3S矩形AGHF+S扇形BAG)=36π+3π)=27π;

3)如圖2,連接BI并延長交ACD.∵I是△ABC的重心也是內(nèi)心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴當(dāng)它第1次回到起始位置時,點I所經(jīng)過的路徑是以O為圓心,OI為半徑的圓周,∴當(dāng)它第n次回到起始位置時,點I所經(jīng)過的路徑長為n2π=2nπ.故答案為:2nπ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求畫圖

1)如圖,平面上有五個點A,BC,DE. 按下列要求畫出圖形.

①連接BD;

②畫直線ACBD于點M;

③過點A作線段APBD于點P;

④請在直線AC上確定一點N,使B,E兩點到點N的距離之和最小(保留作圖痕跡).

2)小強用5個大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.注意:只需添加一個符合要求的正方形,并用陰影表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長是,的平分線交于點,若點分別是上的動點,則的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦放假時,小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.

1)若以小明家為原點,向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點A、B、C表示出來;

2)超市和姥爺家相距多少千米?

3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,菱形EFGH的三個頂點E、GH分別在正方形的邊AB、CDDA上,AH1,聯(lián)結(jié)CF

1)當(dāng)DG1時,求證:菱形EFGH為正方形;

2)設(shè)DGxFCG的面積為y,寫出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;

3)當(dāng)DG時,求∠GHE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的201712月份的月歷表中,任意框出表中豎列上四個相鄰的數(shù),這四個數(shù)的和可能是:

A.60B.70C.80D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Ly=ax2+bx+cx軸交于AB3,0)兩點(AB的左側(cè)),與y軸交于點C0,3),已知對稱軸x=1

1)求拋物線L的解析式;

2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;

3)設(shè)點P是拋物線L上任一點,點Q在直線lx=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 閱讀下列材料:我們知道

現(xiàn)在我們可以用這個結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式時,令,求得;令,求得(稱-12分別為,的零點值).在有理數(shù)范圍內(nèi),零點值-12可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①當(dāng)時,原式;

②當(dāng)時,原式;

③當(dāng)時,原式.

綜上所述,

通過以上閱讀,請你解決以下問:

(1)分別求出的零點值;

(2)化簡代數(shù)式.

查看答案和解析>>

同步練習(xí)冊答案