【題目】如圖(1),已知△ABC是等腰直角三角形,∠BAC90°,點(diǎn)DBC的中點(diǎn).作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AE、BG

1)試猜想線段BGAE的關(guān)系(位置關(guān)系及數(shù)量關(guān)系),請(qǐng)直接寫出你得到的結(jié)論;

2)將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)一角度α(0°α90°),如圖(2),通過(guò)觀察或測(cè)量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說(shuō)明理由;

3)若BCDE2,正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)角度α (0°α360°)過(guò)程中,當(dāng)BG為最小值時(shí),求AF的值.

【答案】1)相等且垂直;(2)成立,見(jiàn)解析;(3.

【解析】

1)首先利用等腰直角三角形的性質(zhì)和正方形的性質(zhì)得出DG=DEAD=BD,進(jìn)而得出BDG≌△ADE,即可得出答案;
2)延長(zhǎng)EA分別交DG、BG于點(diǎn)N、M兩點(diǎn),首先證明BDG≌△ADE,進(jìn)而得出BGAEBG=AE
3)由(2)知,要使AE最大,只要將正方形繞點(diǎn)D逆時(shí)針旋旋轉(zhuǎn)270°,即A,DE在一條直線上時(shí),AE最大,進(jìn)而求出即可.

解:(1)如圖(1


∵△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)DBC的中點(diǎn),
BD=CD=AD,
∵在BDGADE

∴△BDG≌△ADESAS),
BG=AE,∠DGB=DEA
延長(zhǎng)EABG于一點(diǎn)M,
∴∠GAM=DAE,
∴∠GMA=EDA=90°,
∴線段BGAE相等且垂直;

2)成立,
如圖(2),延長(zhǎng)EA分別交DG、BG于點(diǎn)M′N′兩點(diǎn),


∵△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)DBC的中點(diǎn),
∴∠ADB=90°,且BD=AD,
∵∠BDG=ADB-ADG=90°-ADG=ADE,
∵在BDGADE

∴△BDG≌△ADESAS),
BG=AE,∠DEA=DGB
∵∠DEA+DNE=90°,∠DNE=MNG
∴∠MNG+DGM=90°,
BGAEBG=AE;

3)由(2)知,要使AE最大,只要將正方形繞點(diǎn)D逆時(shí)針旋旋轉(zhuǎn)270°,即AD,E在一條直線上時(shí),AE最大;
∵正方形DEFG在繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中,E點(diǎn)運(yùn)動(dòng)的圖形是以點(diǎn)D為圓心,DE為半徑的圓,
∴當(dāng)正方形DEFG旋轉(zhuǎn)到G點(diǎn)位于BC的延長(zhǎng)線上(即正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)270°)時(shí),BG最大,如圖(3),


BC=DE=m,則AD=EF=m,

RtAEF中,AF2=AE2+EF2=AD+DE2+EF2=

AF=,即在正方形DEFG旋轉(zhuǎn)過(guò)程中,當(dāng)AE為最大值時(shí),AF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)體經(jīng)營(yíng)戶了解到有一種盒裝商品能暢銷市場(chǎng),就用4萬(wàn)元購(gòu)進(jìn)這種商品,面市后果然供不應(yīng)求,他又用8.8萬(wàn)元購(gòu)進(jìn)了第二批這種商品,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但每盒單價(jià)漲了4元,他在銷售這種盒裝商品時(shí)每盒定價(jià)都是56元,最后剩下的150盒按八折銷售,很快售完,在這兩筆生意中,這位個(gè)體經(jīng)營(yíng)戶共贏利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到平行四邊形A1BC1D1的位置,此時(shí)C1D1恰好經(jīng)過(guò)點(diǎn)C,則∠ABA1=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(21),B(14),C(3,2)

(1)畫出△ABC關(guān)于點(diǎn)B成中心對(duì)稱的圖形△A1BC1;

(2)以原點(diǎn)O為位似中心,相似比為12,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校墻邊有兩根木桿.

(1)某一時(shí)刻甲木桿在陽(yáng)光下的影子如圖所示,你能畫出乙木桿的影子嗎?(用線段表示影子)

(2)當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?

(3)在你所畫的圖中有相似三角形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=﹣x+my2x+n的圖象都經(jīng)過(guò)A(﹣4,0),且與y軸分別交于B、C兩點(diǎn),則ABC的面積為( 。

A.48B.36C.24D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校八年級(jí)學(xué)生每周平均體育鍛煉時(shí)間的情況,隨機(jī)抽查了該年級(jí)的部分學(xué)生,對(duì)其每周鍛煉時(shí)間進(jìn)行統(tǒng)計(jì),根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成圖1和圖2兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:

1)本次共抽取了學(xué)生   人,并請(qǐng)將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)這組數(shù)據(jù)的中位數(shù)是   ,求出這組數(shù)據(jù)的平均數(shù);

3)若八年級(jí)有學(xué)生1800人,請(qǐng)你估計(jì)體育鍛煉時(shí)間為3小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查屬于 調(diào)查,樣本容量是

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);

(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACD中,AD=9,CD=,ABC中,AB=AC,若∠CAB=60°,ADC=30°,ACD外作等邊ADD′

(1)求證:BD=CD′

(2)求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案